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11ABSTRACTStudies of the luminosity evolution of optical Quasi{Stellar Objects (QSOs)suggest that a large number of normal{looking galaxies today have a centralmassive black hole. These galaxies once contained Active Galactic Nuclei (AGN),but a dwindling fuel supply forced the central engine to fade. If one of thesegalaxies happens to be close enough, it might be possible to detect the centralblack hole by the e�ects it has on the kinematics and surface density of stars inthe galactic nucleus. But, for the majority of galaxies, it is not feasible to observethese e�ects due to their great distance.Not feasible, that is, until the black hole disrupts a passing star. The debrisof the star will form an accretion disk around the black hole. The galactic nucleuswill then become a reborn AGN. It is then possible to detect the black hole by thesudden appearance of a compact source of extreme UV and X{ray photons at thecenter of a galaxy. Broad, double{peaked emission lines may also appear, givingconclusive evidence that an accretion disk has formed around a massive black hole.A survey to detect 
ares from galactic nuclei resulting from tidally{disrupted starscould possibly answer whether or not most galaxies go through an AGN phase.In this work, we will use Smoothed Particle Hydrodynamics (SPH) simulationsto remove much of the uncertainty that existed in previous work on the tidaldisruption of stars. These works were forced to assume that stars which passedinside the Roche limit of a black hole were completely accreted by the black hole.We will replace this assumption with the results of our SPH simulations, and �ndthat previous works overestimated the rate at which gas is stripped from stars by afactor of two. We will then review the observational consequences of a disruptionevent, and consider two cases in which such an event may have been witnessed.
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Chapter 1INTRODUCTIONWithin the inner parsecs of an Active Galactic Nucleus (AGN), power comparableto that radiated by the entire host galaxy is released. An exotic process is requiredin the central region of an AGN that is capable of such e�cient conversion of massto energy. The leading candidate for this process is an accretion disk around amassive black hole. It is expected that � 10% of the rest mass energy of accretedmaterial will be radiated. At this e�ciency, about 1 M� of material must beaccreted per year to achieve a total luminosity of 1045 ergs=s. The tidal disruptionof stars by the massive black hole at the center of the AGN was proposed byHills (1975) as a source of the required material. Subsequent research found thatalthough tidal debris is a source for fuel, such debris cannot provide material at therate required for the more luminous AGNs. For these objects, the central densityis so great that stars are more likely to be destroyed by colliding with other starsthan to be disrupted by the black hole. It appeared that tidal disruption was onlyof importance in the less massive of Seyfert galaxies, and work on this subject wasminimal after the early 1980s.



13In the later 1980s, detailed studies of the optical luminosity evolution ofAGN (e.g., Boyle et al. 1987) con�rmed the already held belief that although thespace density of AGN in the past was comparable to that in the present day, theluminosity function had evolved with time. One way to explain the di�erencesbetween the past and present luminosity function is to assume that AGNs becomefainter with time. In this model, all AGN were formed before a redshift of z = 2:2and have lived on into the present in the form of Seyferts. Due to the long lifetimeof these AGN, the central black hole is able to grow to a present day mass of order109 M� or greater. With a black hole mass this large, the tidal disruption of starsdoes not contribute mass to be accreted by the black hole, as the radius at whichstars are disrupted is actually inside the event horizon of the black hole. Starssimply fall into the black hole without disrupting. Again stellar collisions appear tobe the dominant source of the material which is accreted by the central black hole.A problem with this scenario, however, is that modern AGN do not to appear, onaverage, to have the large black hole mass (109 M�) predicted.However, there is an alternative interpretation of the results of Boyle et al.Instead of a single population of long{lived AGN, it is possible to explain theobservations by hypothesizing generation after generation of short{lived AGN,with the characteristic luminosity decreasing in later generations. The AGN seentoday are just the latest generation of this progression. The proposed lifetime ofa given AGN is � 107 years, during which time the central black hole grows to amass � 107 M�. A consequence of this model is that many galaxies today shouldhave a massive central black hole. Since the majority of these galaxies are notobserved to have an active nucleus, detecting the presence of the central blackhole would appear to be a problem. A solution to this problem was suggested byRees (1988). He noted that an inactive AGN will become active when the central



14black hole disrupts a star and accretes the debris. He estimated that the accretiontime scale for the debris was of order years, while the interval between disruptionevents ranges from 102{104 years, depending on the mass of the black hole and thedensity and velocity dispersion of the stellar nucleus. This means that these \deadquasars" spend less than 1% of the time in an active state. But this also means it ispossible to detect the massive black holes around us by searching for galactic nucleiwhich suddenly become active. If black holes could be detected this way in manygalaxies, it would lend considerable support to the short{lived AGN hypothesis.Rees was able to give a rough idea of what a reborn AGN would look like.But uncertainties about the physics of the disruption of the star and the accretionof the resulting debris needed to be addressed. For example, in the majority ofprevious work on the tidal disruption of stars, it was assumed that the star wasdisrupted if it passed within a threshold distance from the black hole. All of thedebris would then be accreted by the black hole. This assumption, which we willcall the hard{sphere assumption, was a simpli�cation that was necessary at thetime because it was not yet possible to numerically simulate the disruption of astar. Now, with modern high{speed computers and a numerical technique knownas Smoothed Particle Hydrodynamics (SPH), it is possible to model the disruptionprocess in su�cient detail. The particular SPH method which we will employ isdescribed in Chapter 2. The disruption of a star is an extremely dynamic event,and our SPH method uses several original modi�cations in order to handle theextreme conditions which arise. With the results from our SPH simulations we willthen replace the hard{sphere assumption with numerically derived cross sections,which will be presented in Chapter 3. This achievement will remove one degree ofuncertainty which existed in previous work on the tidal disruption of stars.



15We will then proceed in Chapter 4 to re{examine the problem of the disruptionof stars in a stellar cluster surrounding a massive black hole, with an emphasis onthe impact of using our numerical results in place of the hard{sphere assumptionused previously. Brie
y, we �nd that previous work overestimated the rate at whichgas is stripped from stars by a factor of two.Next we consider some of the observable consequences of a tidally disruptedstar. The actual disruption of the star is unlikely to be observed, as the durationof this event is only hours, and in the majority of cases the star will be quicklypulled apart and cool. So one must wait until the debris is accreted by the blackhole in order to tell that a star has been disrupted. Using the results from our SPHcalculations, it is possible to estimate the time scale for the debris to be accreted.We �nd our results con�rm earlier estimates by other workers in that there will bea 
are which lasts for approximately one year after the star is disrupted.We next review two papers that both claim to have observed an outburst froma galactic nucleus which was triggered by the tidal disruption of a star. Finally, inChapter 5, we review the major �ndings of this work and comment on what futurework could be done to improve our understanding of the role of the tidal disruptionof stars in the formation and evolution of active galactic nuclei.
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Chapter 2A METHOD OF SMOOTHEDPARTICLE HYDRODYNAMICSUSING SPHEROIDALKERNELSThe development of smoothed particle hydrodynamics (SPH) in the late 70's (Lucy1977; Gingold & Monaghan 1977) was in response to the need for a numericalmethod which could e�ciently model three{dimensional systems which lacksymmetry and possess large voids. Traditional �nite{di�erence techniques requirea grid to encompass the system under study. In three dimensions, the number ofgrid elements can quickly make a problem intractable, so symmetry arguments arenecessary to reduce the problem to a two dimensional calculation. In addition,memory is wasted on grid elements representing empty regions. SPH overcomesthese problems by representing the 
uid with a �nite number of particles which



17act as interpolating points for quantities such as density and internal energy. Eachparticle moves in response to particle{particle forces like gravity and gas pressure.As the particles move, so does the interpolation mesh. No memory is used torepresent empty spaces, and since the interpolation mesh moves with the 
uid,SPH is able to e�ectively model systems which deform from a simple symmetry.With the advent of e�cient neighbor{�nding schemes, SPH simulations routinelyuse 104{105 particles on desktop workstations. For a recent review of SPH, consultMonaghan (1992) and the references therein.All SPH codes employ a smoothing kernel in order to interpolate physicalquantities using the particles as the interpolating points. In almost all previouscodes, the smoothing kernel was a spherically symmetric function W . One requiresthat W can be normalized and that it is of �nite extent. The smoothing length hserves as a measure of the extent over which W is nonzero. The density at a pointin space, for example, can then be de�ned as�(~r) = NXj=1mjW (~r � ~rj; hj) ; (2.1)where N is the total number of particles. This expression, however, is uselesscomputationally because the majority of the particles will not contribute tothe sum, as W is zero for distances greater than a few times h. By usingneighbor{�nding routines the number of particles included in the above sum isreduced to just the contributing particles. Common practice is to initially positionthe particles on a regular lattice. The smoothing length h of each particle is thenset as to enclose the desired number of neighbors, typically 40{80. This number ofneighbors is necessary to insure the accuracy of the interpolation, and results in hbeing approximately equal to the spacing of the particles in the grid.Now consider the following example { a constant density, self-gravitating



18spherical cloud of gas which begins to contract. Let the initial radius of the cloudbe R and let all particles have an initial smoothing length of h0. As the cloudcontracts, the particles are brought closer together, increasing the number ofneighbors for each particle and slowing the simulation down. And at some point,the size of the cloud will begin to approach h0, meaning there is e�ectively oneresolution element across the entire cloud! In order to address this problem, almostall SPH codes dynamically adjust the size of the kernel in order to maintain aconstant number of neighbors. This has the bene�ts of improving spatial resolutionas well as speeding up the simulation.Now imagine that instead of collapsing in a spherically{symmetric manner, thegas cloud collapses along a preferential axis, perhaps due to net angular momentum.Eventually the sphere will deform into a 
attened disk shape. In order to maintaina constant number of neighbors, the kernel will have to shrink to a fraction of theheight of the disk. If the disk is su�ciently 
attened, however, this may result ina kernel that is not large enough to extend to any other particles within the planeof the disk, meaning there is no pressure force between these particles. The onlypressure forces will be along the axis on collapse, which is clearly wrong. To addressthis problem, one could constrain the kernel to always be large enough to includethese lateral particles. Consequently, however, the smoothing length would becomecomparable to the thickness of the disk, and spatial resolution would be sacri�ced.Therefore, with a kernel that can only deform in a spherically{symmetric manner,it is impossible to model the evolution of the system once it reaches the disk state.In order to quantitatively demonstrate the point raised above, consider thefollowing example. Let a zero{temperature, constant{density cloud collapse along



19the z{axis with a homologous velocity pro�le given byvz(z; t) = �v0 zzm(t)! ;zm(t) = z0 � v0t : (2.2)Here, z0 is the initial height of the cloud, and zm(t) is the maximum extent of thecloud in the z{direction as a function of time. Let the initial separation of theparticles be h0, which will also be the initial smoothing length for each particle. Inaddition, give each particle a mass of m. We now want to determine how to changeh in order to maintain a constant number of neighbors Nneigh for each particle. Acrude measure of the density at a given particle can be written� ' mNneighh3 : (2.3)In order to keep Nneigh constant we require that h / ��1=3. For a given particle wecan then write h(t) = h0  �0�(t)!1=3 ; (2.4)where h0 and �0 are the initial smoothing length and density of the particle. Takingthe time derivative of this expression and applying some algebra givesdh(t)dt = �h(t)3  1�(t) d�(t)dt ! : (2.5)By the use of the continuity equation, we end up with the following expression forthe time evolution of h dh(t)dt = h(t)3 r � ~v : (2.6)In the example under consideration, the only particle motion is along the z{axis(since the cloud is zero temperature), and equation (2.6) reduces todh(t)dt = h(t)�13� @vz(z; t)@z ! ;



20= h(t)� �v0z0 � v0t� : (2.7)Integrating this equation gives the time evolution of hh(t)h0 = "zm(t)z0 #1=3 : (2.8)Because we require the smoothing kernel W to be of �nite extent, it will havea value of zero for distances greater than �h, where � is typically two. When thecloud has shrunk by a factor of �3 in the z{direction (i.e., (zm(t)=z0) = �3), one�nds h = h0=�. Since the particles are not moving in the x{y plane, the separationof the particles in the x{y plane will be h0. Therefore, the particles are no longerin contact in the x{y plane. Adding particles will not help the situation, since theright hand side of equation (2.8) does not depend on h0. For the typical value of� = 2, the greatest density ratio which can be modeled is a factor of eight. Thismeans that one can still model adiabatic shocks, where the maximum densityenhancement is given by ��0 = 
 + 1
 � 1 ; (2.9)where 
 is the ratio of speci�c heats. Typical values for 
 are 5=3 and 4=3, leadingto a maximum density enhancement of 4 and 7, respectively. In summary, a codeusing spherical kernels encounters severe problems when attempting to model asystem that becomes substantially compressed in one direction.To address this problem, we have developed an SPH code which allows theinitially spherical kernels to deform into a spheroid shape. In the above example,the size of the kernel in the direction of collapse would evolve independently ofthe size of the kernel parallel to the x{y plane. This allows the relative spatialresolution in the z{direction to be maintained without particles losing lateralcontact, as in the case of spherical kernels. Our method is directly applicable to a



21number of astrophysical problems involving nonspherically symmetric events, suchas head{on stellar collisions or tidal disruptions.2.1 Implementing Spheroidal Kernels2.1.1 IntroductionThe method described in this paper is a special case of a more general methodof SPH we are developing. In this more general case, the smoothing kernel is atriaxial ellipsoid which can be oriented arbitrarily in three space. The informationdescribing this kernel can be conveniently contained within a second{order, real,symmetric tensor H H = 0BBB@hxx hxy hxzhxy hyy hyzhxz hyz hzz 1CCCA : (2.10)The eigenvectors of this tensor are the directions of the three axes of the ellipsoid,and the corresponding eigenvalues are the extent of the ellipsoid along each axis.To use this smoothing kernel in a simulation, one would initially set the tensor Hof each particle according to the geometry of the problem. If spherical kernels weredesired initially, then one would set hxx = hyy = hzz = h0, where h0 is the initialsmoothing length, and hxy = hxz = hyz = 0. However, with ellipsoidal kernels, onehas more freedom in setting up the initial conditions than one has with sphericalkernels. If the initial con�guration was a disk, then one could pack ellipsoidstogether instead of spheres, reducing the number of particles necessary to achievea given spatial resolution across the thickness of the disk. During the simulation,one would modify H for a given particle according to the local 
ow of neighboring



22particles in order to maintain a relatively constant number of neighbors. Given thenumber of degrees of freedom for the smoothing kernel, a code using ellipsoidalkernels would provide excellent spatial resolution even if the system underwentextreme deformation. We are currently working on a version of the code whichimplements ellipsoidal kernels.Meanwhile, we have found that a less complex version of the code is su�cientfor the class of problems we are interested in. Because the tensor H is a real,symmetric tensor, there exists a reference frame in which it is a diagonal matrix.Let us choose the frame in which we will compute the problem to be the framewhich diagonalizes H . Now let us assume that the frame which diagonalizes Hremains constant throughout the simulation. This reduces the complexity of theproblem because H is always a diagonal matrix. In addition, impose the constraintthat hxx = hyy at all times. The resulting shape of the kernel is a spheroid, and itis well suited for modeling systems that deform in predominately one direction. Inthe case of the tidal disruption of a star, for example, the star is modestly deformedin the orbital plane as it passes the black hole. Simultaneously, the star is savagelycompressed in the direction perpendicular to the orbital plane, forming a thin disk.By choosing the x{y plane to be the orbital plane, we cause the major compressionof the star to be along the z{axis. The spheroidal kernel can change its size alongthe z{axis (hzz) independent of its size in the x{y plane (hxx=hyy). This allows oneto maintain a constant number of neighbors while also ensuring contact with otherparticles in the plane of the disk, overcoming the problems inherent to sphericalkernels.



232.1.2 Calculating the Value of the Kernel and its DerivativeThe modi�cations required to an existing SPH code in order to implementspheroid kernels are minimal. The code must �rst be modi�ed to take into accountthe fact that the kernel function and its derivative now depend on ~r and not just r.A spheroid is produced by rotating an ellipse about either its major or minor axis.Let this axis of rotation be along the z{axis. The extent of the spheroid along thex{, y{, and z{axes will be represented by hxx, hyy , and hzz, respectively. In thiscase, the second{order tensor H introduced in the previous section has the formH = 0BBB@ hxx 0 00 hyy 00 0 hzz 1CCCA : (2.11)Due to the fact that we have constrained the kernel to be a spheroid, hxx = hyy atall times, and also note that for the case of a spherical kernel, hxx = hyy = hzz .De�ne the smoothing kernel to be W (~r;H). Furthermore, choose a functionW 0(v) which satis�es the normal criteria for a spherical smoothing kernel, i.e., of�nite extent and normalizable. We want to construct our smoothing kernel W sothat surfaces of constant W lie on spheroids. This can be achieved by de�ningv2 = � xhxx�2 +  yhyy!2 + � zhzz �2 ; (2.12)W (~r;H) = W 0(v)hxxhyyhzz : (2.13)It is assumed in equation (2.13) that W 0 has been properly normalized, so that1hxxhyyhzz Z 10 W 0(v) v2dv = 1 : (2.14)To compute the gradient of W , we must compute its components along the x{, y{,and z{axes. For example, the component along the x{axis can be computed by



24using the fact that @W@x = @W@v @v@x ; (2.15)from which one obtains@W@x = xv hxx2 @W@v = xv hxx2� 1hxxhyyhzz @W 0@v � : (2.16)Similarly one can obtain equations for @W@y and @W@z .2.1.3 Evaluating Particle ForcesIn order for any SPH code to run e�ciently, it must use a fast method ofidentifying the neighbors of a given particle. In a code which uses spherical kernels,the test to �nd a neighbor is to see if the distance between the two particles is lessthan the radial extent rcut of the kernel. For spheroidal kernels, the situation isslightly more complicated. A �rst pass is made to �nd potential neighbors, usingthe largest of hxx and hzz to compute rcut, where rcut(h) = �h, with � typicallyhaving a value of two. This value of rcut is then supplied as the cuto� radius for thesame neighbor{�nding routine that was used in a spherical code. This producesa list of particles which must be further �ltered to �nd the true neighbors. Todo this, one computes the variables vi and vj for particles i and j using equation(2.12). If either W (vi) or W (vj) is nonzero, then the interaction between the twoparticles is calculated; otherwise, the pair is ignored.In order conserve linear momentum locally, the forces computed betweentwo particles must obey Newton's third law. To symmeterize the forces betweenparticles, we use the following expressions when computing the interaction betweentwo particles i and j (Hernquist & Katz 1989)Wij = 12 fWi(~r;H i) +Wj(~r;Hj)g ; (2.17)



25rW ij = 12nriWi(~r;H i) +rjWj(~r;Hj)o ; (2.18)~r = ~ri � ~rj : (2.19)It should be noted that angular momentum is conserved when using sphericalkernels. This is because the force on one particle due to the other is parallel tothe vector joining the two particles, yielding a torque ~T / ~r � ~F = 0. In a codeusing spheroidal kernels this is not necessarily the case. If hxx 6= hzz , then fromthe expressions for @W@x and @W@z given by equation (2.16), one �nds that the forcebetween two particles is no longer parallel to the vector joining the two particles,leading to a net torque about the x{ and y{axes. Since hxx = hyy, however, therewill be no net torque about the z{axis.Now consider a particle which is surrounded by a sea of copies of itself, withhxx 6= hzz . The torque on the particle is a vector quantity depending on the vectorbetween the particle and its neighbor. If one sums over all neighbors, then the nettorque will be zero. Can one expect the same to be true in a real computationalproblem, where the particle will be surrounded by particles which have di�erentparameters than itself? As long as physical quantities do not vary excessively overa smoothing length in the x{ or y{directions, then cancelation should occur tosome degree. This requirement will be met in most situations, since the smoothinglength of the kernel should be small compared to interesting physical scales in theproblem. The particles near the boundary of the simulation will not be completelysurrounded by neighbors, and the least cancelation will most likely occur for theseparticles. Whenever possible, one should arrange for the total angular momentumvector to be along the z{axis, since no component of the net torque betweenparticles is along the z{axis. In many problems, the direction of predominantcollapse is parallel to the axis of rotation, so it works out that spheroidal kernels



26allow one to have improved spatial resolution along the direction of collapse andsimultaneously conserve angular momentum exactly.There is a further complication to consider when calculating the self{gravityof the gas particles. In the case of spherical kernels, the gravitational force isalways along the vector between the centers of the two particles, leading to nonet torque. With spheroidal kernels, the mass distribution within the kernelmay no longer be spherically symmetric, leading to a net torque between thetwo particles. Fortunately, this torque should largely cancel out, for reasonsdiscussed in the preceding paragraph. The best approach we have found forcalculating the gravitational force between two overlapping particles is to use agravitational softening parameter � , as used in traditional N{body codes. In thecase of the tidal disruption of a star by massive black hole, we also �nd that thetotal angular momentum for the system is conserved to better than 1%, so it ispossible to produce quality results using this assumption. Nevertheless, one shouldclosely monitor the total angular momentum vector in case this assumption is notwarranted in a particular problem.2.1.4 Time Evolution of the Tensor HIn a code using a spherical kernel, it is usually desirable to vary the smoothinglength h for each particle in order to maintain a constant number of neighborsand to improve spatial resolution. When using spheroidal kernels, both hxx andhzz can be independently modi�ed in order to preserve spatial resolution in twoperpendicular directions. Remember that for spheroidal kernels, hxx=hyy. Byusing the strain{rate tensor S, one can measure the deformation of the positions ofparticles relative to a given particle. This is the information necessary to properly



27deform the kernel to maintain spatial resolution and a relatively constant numberof neighbors.The de�nition of S is sij = 12  @vi@xj + @vj@xi! : (2.20)The diagonal elements of S are the magnitude of the relative change of theproximity of neighboring particles in the x{, y{, and z{directions. The o�{diagonalelements supply information necessary to determine the actual directions ofdeformation, which may be along a direction other than the coordinate axes. Wehave assumed that the frame which diagonalizes H does not change during thesimulation, so we set the o�{diagonal terms of S to be zero. Writing S for particlei gives Si = 1�i 0BBB@ sxx;i 0 00 syy;i 00 0 szz;i 1CCCA ; (2.21)where skk;i = NneighXj=1 mj(vk;i � vk;j)(rWij)k : (2.22)The elements of Si have the units of [time�1], so multiplying Si by a lengthgives the proper units for _H i. In order to maintain a spheroidal shape for the kernel,we require that hxx = hyy, which can be accomplished by requiring _hxx = _hyy . The�nal expression for _H i is_H i = 1�i 0BBB@ sR;i � hxx;i 0 00 sR;i � hyy;i 00 0 szz;i � hzz;i 1CCCA ; (2.23)where sR;i = 12(sxx;i + syy;i) : (2.24)



28This gives three linear, �rst{order di�erential equations to solve to �nd H for thenext time step, but the equations for hxx and hyy are identical. So, in practice, oneintegrates the equations for hxx and hzz and then sets hyy = hxx. Note that wehave found it useful to set a lower limit for hzz when an object undergoes extremecompression. This is because as hzz shrinks, the typical time step also becomessmaller. By setting a lower limit on hzz , one can sacri�ce some spatial resolution inorder to reduce the running time of the simulation.Note that there is nothing fundamentally wrong with ignoring the o�{diagonalterms of S. To see this, a form of _hi used by a spherical kernel code can be written_hi = 13�i (sxx;i + syy;i + szz;i) : (2.25)In the case of a spherical kernel, one not only ignores the o�{diagonal terms of S,but one also averages all three diagonal terms when determining _h. The advantageprovided by spheroidal kernels is that one only averages two of the diagonalelements of S, allowing another degree of freedom in which the kernel can deform.2.2 Benchmarking Spheroidal and Spherical KernelsIt has been shown that converting an existing code to use spheroidal kernels isnot a monumental task. This section will examine the enhanced capabilities gainedby using spheroidal kernels. The applications that have the most to gain are thosewhich involve mass motion in a preferred direction, such as the head{on collisionof two stars. After the stars contact one another, they will form a thin, disk{likestructure with material shooting out in the plane of contact. This causes twocon
icting requirements for a spherical kernel code, as in one direction material isbeing pressed together while in a perpendicular direction material is expanding. As



29a consequence, spatial resolution is sacri�ced in one direction, and physical contactis lost in the other. Spheroidal kernels handle this case beautifully, compressing inone direction and expanding in the other.2.2.1 Homologous Collapse of a Zero{Temperature Cloud in 1DA test case which will demonstrate some of the problems a spherical kernelcode has with the head on collision of two stars is the homologous collapse of azero{temperature cloud in 1D. Initially a cylindrical cloud of constant density isgiven a homologous velocity pro�levz(z) = �vz0 � zz0� ; (2.26)where z0 is the initial height of the cylinder. This problem has a trivial analyticsolution �(t) = �0 � z0z0 � vz0t� ; (2.27)where �0 is the initial density. At a given time t, the density is constant throughthe cloud.There is a complication when trying to simulate this particular problem withan SPH code. A commonly used form of the energy equation for particle i isduidt = Pi�2i NXj=1mj(~vi � ~vj) � riWij + 12 NXj=1mj�ij(~vi � ~vj) � riWij ; (2.28)where �ij = 8<: ��1cij�ij+�2�2ij�ij ; if (~vi � ~vj) � (~ri � ~rj) � 0 ,0; otherwise , (2.29)and �ij = hij(~vi � ~vj) � (~ri � ~rj)j~ri � ~rjj2 + �h2ij ; (2.30)



30and hij = 12(hi + hj), cij = 12(ci + cj), and �ij = 12(�i + �j), where ci is the speedof sound at the position of particle i. The constants �1 and �2 are of order unity,and for our test case, the values �1 = 1 and �2 = 2 were used. The constant �is usually of order 10�4, and is included to soften the e�ect of having particles inclose proximity. Note that the �rst sum of equation (2.28) represents the heatingdue to PdV work while the second sum is the heating from shocks.For now let's ignore the x{ and y{components of velocity, and assume constanth for all particles. Take two neighboring particles i and j with (zi � zj) � �1=2h.Substituting the homologous velocity pro�le from equation (2.26) into equation(2.30) gives, after some algebra, �ij = �h�vz0z0 � : (2.31)It follows from equation (2.28) that each particle will receive shock heating,despite the fact that no physical discontinuities exist in the original problem! As aconsequence, the cloud will no longer be at zero temperature and the solution forthe central density of the cloud will depart from equation (2.27).To compensate for this undesired heating, one can modify equation (2.30) tobe �ij = hij�~v � (~ri � ~rj)j~ri � ~rjj2 + �h2ij ; (2.32)where�~v = 8>>>>>>>><>>>>>>>>: 0; if (zi � zj)(vzi � vzj) > 0 ,otherwise;(vxi � vxj; vyi � vyj ; zj�vzizi �� vzj); if jzij > jzjj ,(vxi � vxj; vyi � vyj ; vzi � zi�vzjzj �); if jzjj > jzij . (2.33)The �rst condition is necessary because we only want to apply this correction tocollapsing material, not expanding. The other two expressions are used in order to
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Fig. 2.1.| Central density of a homologously collapsing cold cloud versus time. Thecurves are A { Analytic solution, B { Spheroidal kernels, homologous contractionremoved from viscosity expression, C { Spheroidal kernels, standard viscosityexpression , D { Spherical kernels, modi�ed viscosity expression (like B), and E{ Spherical kernels, standard viscosity expression.avoid dividing by a number near zero. This form of �ij will be zero if the materialis undergoing homologous collapse in the z{direction, leading to no shock heatingand the behavior of the central density following the analytic result.In Figure 2.1, the results of several di�erent SPH runs are given. The densityat the center of the cylinder is plotted against time. In cases B and C, spheroidalkernels were used, while in cases D and E, a traditional spherical kernel was used.The case labeled A is the analytic result given by equation (2.27). Cases C and Eused the standard expression for arti�cial viscosity forces, while cases B and D usedthe alternate expression which takes into account homologous motion. The �rstpoint demonstrated by Figure 2.1 is that the spheroidal code follows the analytic



32solution to much higher density than the spherical kernel runs. The sphericalmodels begin to overestimate the density around t = 0:2, due to the fact that thekernel size does not shrink as fast as the height of the cylinder. As a result, moreand more particles contribute to the computation of the density at the center of thecylinder. At t = 0:3 and later, the spherical models yield a density which is lowerthan the analytic result. The innermost row of the cloud at this time is shown inFigure 2.2, which is a slice through y = 0 and is approximately hyy thick. Herethe particle kernels are shown as circles with a radius r = hxx = hzz . The circlesappear as ellipses in this �gure because of the di�ering plotting scales used for thex{ and y{axes. It is clear that immediately adjacent particles in x are more than2hxx apart, meaning they are no longer interacting and there is no pressure forceacting in the x{direction. In Figure 2.3, the entire slice through y = 0 is shownwith the same plotting scales as Figure 2.2. The typical hzz is now over one quarterthe thickness of the disk, making it impossible for the code to adequately modelthe physics of the collapse any farther.In contrast, examine an identical slice from the spheroidal run at the same codetime (t = 0:3), shown in Figure 2.4. Notice that the particles are in communicationin both the x{ and z{directions. The ratios of hzz=zmax and hxx=xmax are almostequal, where zmax and xmax are the maximum extent of the disk in the z{ andx{directions. This means that the spatial resolution in the x{ and z{directionshas been preserved even though the cylinder has shrunk by a factor of 16 inthe z{direction. The spheroidal kernel runs deviate from the analytic result fort > 0:312, due to the fact that the initial con�guration was at a small but nonzerotemperature. The internal energy has grown su�ciently by t = 0:312 that thecollapse is no longer homologous. Note that case C, which deviates from theanalytic result �rst, uses the standard expression for arti�cial viscosity. Case B is
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Fig. 2.2.| Innermost row of particles at t = 0:3 for a run using spherical kernels.The collapse is along the z{direction. Due to the di�erent plotting scales used forthe x{ and z{axes, the ellipses around each particle are actually circles with radiusr = hxx = hzz .
Fig. 2.3.| Same as Figure 2.2 except all particles in a slice through y = 0 areshown.
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Fig. 2.4.| Particle con�guration in the y = 0 plane at t = 0:3 for a run usingspheroidal kernels. The collapse is along the z{direction. The ellipses around eachpoint has a height of hzz and a width of hxx.able to follow the analytic result to a later time due to the use of the modi�edexpression for arti�cial viscosity. The runs were terminated at t = 0:316 because,by this time, the analytic result predicts an in�nite central density.The test case presented here clearly brings out the disadvantages of usingspherical kernels on problems where a system undergoes substantial collapse inone direction. The underlying assumption built into any code which uses sphericalkernels is that the system will deform in an essentially spherical manner. When thesystem strays too far from this assumption then, the simulation is no longer reliable.By allowing an extra degree of freedom for the deformation of the kernel, spheroidalkernels are able to extend the utility of smoothed particle hydrodynamics.



352.2.2 Tidal Disruption of a Star by a Massive Black HoleThe initial motivation to develop a code using spheroidal kernels came fromour frustration using spherical kernels to model stellar disruptions by a massiveblack hole. In this problem, a star passes a massive black hole (typically 106 M�)on a parabolic orbit which passes within the Roche radius rt. We will de�ne rt asrt = �MbhM? �1=3R? : (2.34)The strength of the encounter can be parameterized by � = rt=rp, where rp is theclosest approach of the star to the black hole. Qualitatively, one �nds for � > 1that the star will be disrupted and lose approximately one{half its material to theblack hole. This process is interesting, as it may provide a way to free gas fromstars to power an active galactic nucleus (Hills 1975). One �nds that startingaround � = 5 that general relativistic e�ects begin to become important. As ourcode currently uses the Newtonian approximation to treat gravity, the followingdiscussion will be for � � 5.The problem was examined by Carter & Luminet (1983) using an a�ne starmodel, which assumes that surfaces of constant density maintain an ellipsoidalshape. Their primary result was to bring attention to the fact that during extremeencounters (� greater than a few), there is a short period over which the centraldensity of the star increases by a factor of order �3. The atmosphere of the starabove and below the orbital plane is set into free fall motion by the gravitational�eld of the black hole. The star 
attens into a thin pancake{like shape before thefalling material is halted by the buildup of pressure. It is at this point that thecentral density reaches its maximum value. Afterwards, the atmosphere bounces,and the central density monotonically drops.



36Smoothed particle hydrodynamic calculations by Bicknell & Gingold (1983)con�rmed the �ndings of Carter & Luminet qualitatively, but also found thatthe central density increased by a factor of only �3=2, signi�cantly lower thanthat predicted by Carter & Luminet. The reason for the smaller density buildupwas due to the inclusion of arti�cial viscosity in the SPH calculation, which wasnot present in the a�ne models of Carter & Luminet. Shock heating halted thecollapse of the star at a lower central density than predicted by Carter & Luminet(1983). Carter & Luminet (1986) presented new a�ne star models in which theyincluded viscous e�ects and found that they could reproduce Bicknell & Gingold'sresults. They argue, however, that their results do not mean that the a�ne modeland SPH results are correct, but rather that the agreement is due to the lack ofadequate spatial resolution in the SPH runs. The Bicknell & Gingold runs did onlyuse 500 particles. However, there is cause to believe that there is more wrong withthe Bicknell & Gingold calculation than a lack of particles. A more recent SPHcalculation (Laguna et al. 1993) with 7000 particles yielded a similar conclusionthat for a � = 5 encounter, the central density increases by a factor of slightly over10. So it appears that adding particles does not signi�cantly change the densityenhancement predicted by codes using spherical kernels.Our e�orts to duplicate the results given in the previous paragraph with aspherical kernel code met in utter failure for several reasons. Most SPH codesuse a form of the Lax{Wendro� viscosity term as given in equation (2.29). Thecoe�cients �1 and �2 govern the behavior of this equation. If one uses values for�1 and �2 which give good results in a shock tube problem, one �nds that for a� = 5 encounter, the central density only increases by a factor of approximately3, not 10. In fact, we were only able to achieve a large increase in central densityby e�ectively turning o� shock heating. As a consequence, however, the majority



37of the particles involved in the simulation streamed through z = 0, making theresults useless. The only way to prevent the mass streaming of particles is to use ananti{penetration term in the equation of motion, as suggested by Monaghan (1989).A side e�ect of using this term, however, is that in the presence of an externalpotential, the conservation of energy is compromised. A second, more signi�cantproblem is that these calculations used spherical kernels, which, as shown in theprevious section, are unable to follow the one{dimensional collapse of a systembeyond a compression factor of 8. As the star collapses, the spatial resolution givenby the use of spherical kernels erodes to the point that one is unable to resolve thepressure gradient which causes the star to bounce. These strong encounters justcannot be modeled using spherical kernels if the central density increase is as highas previous authors have suggested.Our new calculations of a � = 5 encounter have been designed to address theproblems mentioned in the previous paragraph. As demonstrated in the previoussection, the use of spheroidal kernels preserves spatial resolution in the directionof collapse while maintaining contact between particles in the plane perpendicularto collapse. In addition, we have implemented a viscosity term which is sensitiveto homologous collapse. It can be shown analytically (Bicknell & Gingold 1983)that the velocity pro�le of the free falling material is homologous up until the timewhen this material bounces. As mentioned in the previous section, the standardviscosity term used in SPH calculations will produce shock heating in a homologouscollapse, contrary to what should happen. This is why it was necessary in previousSPH simulations to use unrealistically small values for the viscous parameters inorder to achieve a increase in central density of order 10 for a � = 5 encounter.We have calculated the � = 5 encounter of an n = 3=2 polytrope of mass



38

Fig. 2.5.| Central density as a function of time for a � = 5 encounter of an n = 3=2polytrope. The density is scaled by the initial central density. The time of closestapproach is indicated by the arrow.1 M� and radius 1 R� with a black hole of mass 106 M�. The calculation assumedan ratio of speci�c heats of 5=3 and used 5093 particles. The coe�cients in theLax{Wendro� viscosity term were chosen to be �1 = 1 and �2 = 2. The x{y planewas chosen as the orbital plane, which means the star will collapse parallel to thez{axis. The units used in the code are G = R� = M� = 1. In Figure 2.5, thequantity �=�0 is shown as a function of time, where �0 and � are the initial andcurrent central densities, respectively. The maximum central density is 8 timesthe initial central density, smaller than that reported in other works. The velocitypro�le along the z{axis at the time of closest approach is shown in Figure 2.6.As mentioned earlier, the velocity pro�le is essentially homologous. The modi�ed
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Fig. 2.6.| Z velocity pro�le vs. z along the z{axis at the time of closest approachfor the � = 5 calculation. The bar indicates a length of 2hzz .viscosity term used for this calculation takes into account the homologous 
ow,drastically reducing the erroneous heating of the gas by arti�cial viscosity. Anindication of the enhanced spatial resolution provided by spheroidal kernels is thatonly 3% of the particles streamed through the orbital plane. The majority of thestreaming particles were around the periphery of the star in the z = 0 plane. Theseparticles have less than the average number of neighbors and therefore penetratemore easily. In addition, the average density for these particles is low, so thatthe streaming particles account for only 0.5% of the total mass of the star. Incomparison, a similar run using spherical kernels (and no Monaghan stopping term)resulted in the majority of the particles streaming. The reason for the reducednumber of streamers is that the spheroidal kernels allow our code to represent a



40steeper pressure gradient than possible by a spherical kernel code. This means ourcode can make the collapsing material bounce without having to add the Monaghanstopping term required by a spherical kernel code.The particle con�guration at the time of maximum central density is shown inFigures 2.7 and 2.8. These are the x{y and x{z projections of the particle positions,respectively. Note the cross present in each �gure which indicates a length equal totwice the typical smoothing length in each direction. The height of the star is nowapproximately 0:05 R�, 20 times smaller than its initial height, while the star hasextended to a length along the x{axis of 4 times its initial length. The spheroidalkernels have deformed in order to keep the relative spatial resolution along eachaxis roughly constant. An astute reader will notice that the star is also modestlyelongated in the x{y plane. This is the plane in which the kernels must retain acircular shape, causing the smoothing length in the y{direction to approach a goodfraction of the thickness of the star in that direction. Fortunately, the pressureforces in the x{y plane are small compared to the gravitational tidal forces due tothe black hole. Therefore, spatial resolution in the x{y plane is not as critical as itis in the x{z plane, where one must resolve the pressure gradient which forces thestar to bounce. An indication that the current code is able to resolve this pressuregradient is shown in Figure 2.9, which plots the density pro�le along the z{axisat the time of maximum central density. The relative spatial density, de�ned bythe ratio zmax=hzz , should remain constant in a homologous 
ow. At the time ofmaximum central density zmax=hzz ' 10, comparing nicely to the initial value 8.9.It is instructive to calculate the number of particles required by a code usingspherical kernels in order to achieve a relative spatial resolution of 10 at the timeof maximum compression. The smoothing length obeys equation (2.8), which can
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Fig. 2.7.| Projection of particle positions onto the x{y plane at the time ofmaximum central density for the � = 5 calculation. The cross has a length of2hxx in x and 2hyy in y.
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Fig. 2.8.| Projection of particle positions onto the x{z plane at the time ofmaximum central density for the � = 5 calculation. The cross has a length of2hxx in x and 2hzz in z.
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Fig. 2.9.| Density pro�le vs. z along the z{axis at the time of maximum densityfor the � = 5 calculation. The bar indicates a length of 2hzz .be solved for h0, the initial smoothing lengthh0 = h� z0zmax�1=3 ; (2.35)where h is the smoothing length at the time of maximum compression, zmax is theheight of the star at maximum compression, and z0 is the initial height of the star.The values of h, zmax, and z0 are approximately 0.0055, 0.055, and 1, respectively.Solving for h0 gives h0 = 0:014. The initial smoothing length for particles in apacked lattice �lling a sphere of unit radius is given byh0 ' N�1=3 ; (2.36)where N is the number of particles. So a spherical kernel code would requireN ' 3:5 � 105 particles to achieve the same relative spatial resolution at the timeof maximum density as the spheroidal kernel code. But even with this number of



43particles, the spherical kernel code will have another problem. The compressionfactor at maximum density is of order 20. As shown in the introduction tothis chapter, a code using spherical kernels (independent of the total number ofparticles) will produce no pressure in the directions perpendicular to compression ifthe compression ratio is larger than 8. This means there is no way to model strongencounters between a star and a black hole using spherical kernels. One must usekernels which can deform nonspherically.2.3 ConclusionsWe have shown that systems with deformation in predominately one directioncan cause major problems for an SPH code using spherical kernels. A method ofSPH using spheroidal kernels was introduced which overcomes these problems byallowing the kernel to deform both along the direction of deformation as well asperpendicular to it. Initial results on the tidal disruption of a star by a massiveblack hole indicate that previous studies are qualitatively correct, but most likelyfor the wrong reasons. It is clear that for extreme encounters, in particularwhere general relativistic e�ects become important, that spherical kernels are notadequate. The nature of the problem is such that increasing the number of particlesused by a spherical kernel code does not help. Instead, it is necessary to modifythe smoothing kernel, as it contains a set of constraints on the deformations to aninitially spherical system which can be accurately modeled. Spherical kernels implya system that maintains spherical symmetry; likewise, spheroidal kernels imply a
attened system with axial symmetry. The ultimate realization of this concept willbe ellipsoidal kernels, which, when implemented, should allow a code to produceaccurate results independent of the �nal geometry of the system.
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Chapter 3SMOOTHED PARTICLEHYDRODYNAMICSSIMULATIONS OF THEDISRUPTION PROCESSHills (1975) �rst suggested that tidal disruption of stars by massive black holes inthe center of galaxies could serve as a fuel source to power Active Galactic Nuclei(AGN). This suggestion has been examined several times since then. The stellardynamics problem of how often stars will come close enough to a black hole to bedisrupted has been discussed by Lightman & Shapiro (1977) and Cohn & Kulsrud(1978). At the time of these calculations, however, it was not computationallyfeasible to actually compute the hydrodynamic details of the disruption process.In order to estimate the mass accretion rate onto the black hole, these calculationsassumed that there was a threshold impact parameter inside of which the star was



45tidally disrupted. Once disrupted, its entire mass would be accreted by the blackhole. Clearly, this is an oversimpli�cation. Stars will encounter the black holewith a wide range of impact parameters, and the amount of mass lost by the starand the subsequent fraction accreted by the black hole may span an equally largerange. Furthermore, since large impact parameters are statistically more probable,weaker encounters during which only a small amount of mass is lost could accountfor a signi�cant fraction of all mass tidally stripped from stars. It is the goal of thispaper to provide a more reliable estimate of the amount of mass lost by a star andaccreted by the black hole.The tidal radius rt is the radius at which the tidal �eld of the black holebecomes comparable to the star's own gravitational potential. It can be de�ned bythe relationship rt = (MbhM? )1=3R? : (3.1)Thus, the strength of a given encounter can be parameterized by � = rt=rp, whererp is the closest approach of the star to the black hole. A larger value of � indicatesa stronger encounter. We note that the strength of an encounter has also beende�ned (Press & Teukolsky 1977) by� = (M?Mbh)1=2( rpR?)3=2 : (3.2)In this chapter, we shall use � to characterize a given encounter unless otherwisenoted. To convert, one would use the relationship � = ��3=2.The problem of determining the fate of a star entering the tidal radius isa complicated problem that requires either a relatively sophisticated analyticalmodel or three{dimensional numerical calculations. While distant encounters arerelatively easy to model, close encounters present a number of challenges essentially



46associated with the large change of scales taking place. The star is compressedsigni�cantly in the direction perpendicular to the orbital plane while it is beingstretched enormously in the orbital plane. Furthermore, for encounters approachingthe Schwarzschild radius, relativistic e�ects become important. As the mass of theblack hole Mbh increases, the Schwarzschild radius grows as Mbh; however, the tidalradius rt only grows as M1=3bh . Therefore, these relativistic e�ects become importantfor milder and milder encounters with increasing black hole mass.The analytical model by Carter & Luminet (1983) was the �rst examinationof the behavior of a star during strong encounters with a black hole. The mainassumption of their a�ne model was that contours of equal density remainedconcentric ellipsoids. In addition, the stellar material was treated as an ideal gasthat only underwent adiabatic transformations. General relativistic e�ects werealso included in a later paper (Luminet & Marck 1985). It was found that forencounters stronger than � � 5, there is a period during which the center densityof the star grows by a factor of �3, and the central temperature grows by a factorof �2. They coined the phrase \pancake phase" to describe this period, due to theappearance of the star. Given the large increase in the central temperature anddensity, it was suggested that the resulting enhanced nuclear burning rates couldblow the star apart. However, because in these same extreme encounters the stardeparts from a mass distribution consistent with the main assumption of the a�nemethod, the �ndings of Carter & Luminet remain on uncertain ground. Onlythree{dimensional hydrodynamic calculations seem able to answer the questionssurrounding a strongly disruptive encounter of a star with a black hole.Numerical calculations of mild encounters (� < 1) have been carried outrecently by Khokhlov et al. (1993). Using a three{dimensional �nite{di�erence



47code, they simulated encounters in which stars were modeled as polytropes of indexn = 3=2 and n = 3. However, because of the �nite extent of the computationalvolume imposed by the grid, they were unable to follow the material stripped fromthe star during stronger encounters (� > 1).Three{dimensional numerical simulations of deeper encounters (� � 1) havebeen been performed using exclusively the Smoothed Particle Hydrodynamics(SPH) method (Bicknell & Gingold 1983; Evans & Kochanek 1989; Laguna et al.1993). These simulations have explored the regime in which the star, modeled aspolytrope of index n = 3=2, is completely disrupted (� � 1). Carter & Luminet,as mentioned above, have shown that during the early phases of encounters with� > 1 that there is a period during which the central density of the star increasesdramatically. While Carter & Luminet found that this density increase scales as �3,the numerical simulations of both Bicknell & Gingold and Laguna et al. obtain anincrease scaling as �3=2. While the importance of this e�ect on the overall problemof the feeding of the black hole is probably negligible, it has become a point ofcontention between numerical models and analytical solutions.As demonstrated in Chapter 2, the SPH method su�ers from the fact thatthe kernel used to compute the spatial derivatives has a spherical geometry whoseextension, given by the smoothing length h, scales with the cube root of density.Thus, the scaling is perfect for a spherical collapse or expansion, but not whenthe compression (or expansion) is unidirectional. In this case, the scaling of thekernel results in a smoothing length too large along the direction of compressionand too small in the other directions. As shown in Chapter 2, this produces seriousproblems in unidirectional compressions resulting in a density increase beyond afactor of 8. When translated to tidal encounters, this implies that the standard



48SPH technique is unable to follow realistically encounters deeper than � ' 5.While the general case in which kernels are triaxial ellipsoids leads to severeangular momentum conservation problems, this is not the case for the morerestrictive case in which spheroids are used, as shown in Chapter 2. The use ofsuch kernels which scale di�erently in the direction perpendicular to the orbitalplane than in the plane allows the simulation of very deep encounters (� � 5). Inaddition, it is now possible to follow the evolution through the pancake phase withadequate spatial resolution to model the bounce of the atmosphere of the star andthe subsequent re{expansion (see Section 3.3). We note that the work of Bicknell& Gingold already made use of nonspherical kernels but in a more rudimentaryfashion. 3.1 Numerical MethodIn these simulations, we have employed an SPH code that uses spheroidalkernels, in contrast to prior simulations which have almost exclusively usedspherical kernels (with the exception of Bicknell & Gingold). The innovationspresent in our SPH code and the resulting improvements over a spherical kernelcode were discussed in Chapter 2. In an SPH code, the smoothing kernel Wprovides the means to interpolate physical quantities such as density using anexpression like �(~r) =Xj mjW (~r � ~rj; hj) : (3.3)Here, mj and hj are the mass and smoothing length of particle j, respectively.The smoothing function W (�~r; hj) in a code using spherical kernels becomesW (�r; hj), and the above sum is performed over all particles for which W (�r; hj)



49is nonzero. Typically, a kernel W is chosen so that it becomes zero at the distanceof a few h.As mentioned above, during the pancake phase of the star's disruption, acode using spherical kernels proves to be inadequate. The only way to correct thisproblem is to change the smoothing kernel W so that it is no longer sphericallysymmetric, allowing it to follow the 
ow. We have chosen to use a kernel withtwo degrees of freedom, with contours of equal W having the shape of concentricspheroids. Instead of specifying a smoothing length h for each particle, one mustspecify the smoothing tensor H,H = 0BBB@ hR 0 00 hR 00 0 hzz 1CCCA : (3.4)An illustration of the kernel corresponding to the smoothing tensor H is given inFigure 3.1. In the simple case of a spherical kernel, hR = hzz. The primary featureof spheroidal kernels is that the kernel can change its size along the direction of hzzindependently of its size in the plane orthogonal to hzz . During the pancake phasethe kernels of the particles can also 
atten into pancake{like shapes, providing therequired spatial resolution.A few modi�cations to the method presented in Chapter 2 should be noted.As previously mentioned in Chapter 2, it became clear that when using spheroidalkernels, it is necessary to limit how small hzz can become. If this is not done, thenhzz can take on a very small value, leading to excessively short time steps. In somecases, hzz takes on small values because the problem demands it (such as in thecase of a � � 5 encounter between a star and a massive black hole), and thereforelimiting how small hzz can become basically trades spatial resolution for fastercomputation time. In our calculations we have set the lower limit for hzz so that
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Fig. 3.1.| A graphical interpretation of the spheroidal smoothing tensor H.we favor resolution over speed, since we are interested in resolving the density spikeat the center of the star during the pancake phase.In other cases, hzz appears to take on unreasonable values due to the fact thatthe particles near the periphery of the star have considerably fewer neighbors than atypical particle. This e�ect is a consequence of the fact that the velocity derivativesentering the calculation of the smoothing tensor (see Chapter 2), essentially thestrain{rate tensor, are calculated less accurately near edges. Also, we note that ourprescription for updating the tensor components based on the strain{rate tensor isill{adapted to pure shear 
ows. Recent experiments in which we use the derivativesof the local moment of inertia instead of the strain{rate tensor show that theseproblems can be avoided. We plan to use this improved technique in the future. Inany case, erroneous values of the components of the smoothing tensor lead to lessaccurate estimates of quantities such as density and the velocity gradient. If hzzis allowed to evolve unrestrained using these more noisy estimates, it can take on



51unreasonably small (or large) values. Therefore, it is necessary to restrict hzz toavoid this undesired behavior.In addition to limiting how small hzz can become, the code also now checks tosee how many neighbors a particle has before allowing the volume of the kernel toincrease. Otherwise, we found that some particles would have kernels which wouldgrow to unreasonably large values. It should be noted that the particles a�ectedby these restraints on the kernel are primarily particles that have escaped thestar. The internal energy of these particles is decreasing rapidly due to adiabaticexpansion; thus, the trajectory of these particles is essentially ballistic and is onlyslightly a�ected by these kernel problems.Our calculations use a constant gravitational smoothing length � forgravitational interactions between gas particles, as is commonly done in N{bodysimulations. The gravitational force between a gas particle and the black hole(represented by a point mass) is not smoothed, since the gas particles never comeclose enough to the black hole during the calculation for this to become important.We also employ the modi�ed viscosity term given by equation (2.29). This modi�edterm attempts to take into account the fact that the collapse of the star in thedirection perpendicular to the orbital plane is roughly homologous, and, as a result,there should be no shock heating. Unfortunately, owing to the functional formof the arti�cial viscosity used in the standard SPH method, entropy is increasingunreasonably, leading the star to bounce prematurely. As will be discussed inSection 3.3.2, our modi�ed viscosity term signi�cantly reduces the amount ofheating from shocks up to the pancake phase. The improved spatial resolution dueto our use of spheroidal kernels, as well as the improved treatment of shock heatingthrough the use of the modi�ed viscosity term, are both important advances in the



52modeling of the tidal disruption of stars.3.2 General Notes Concerning the SimulationsIn this work, we will be approximating the internal structure of real stars byusing polytropes of the appropriate index. Since we are interested in the tidaldisruption of stars in galactic nuclei, we must �rst decide which kinds of starswill be predominately disrupted. In the solar neighborhood, it is found that themajority of the mass in stars is in the form of M and K dwarfs (Rana 1987). Theinternal structure of these stars can be represented by a polytrope of index n = 3=2.We will assume that the Present Day Mass Function (PDMF) in galactic nucleiis similar to that found in the solar neighborhood. Therefore, the simulations ofencounters of an n = 3=2 polytrope with a black hole will be the most important.However, in order to give the problem a more general treatment, we will alsoperform several simulations using an n = 3 polytrope, which adequately representsstars of nearly solar mass and greater.Although the number density of giants is expected to be signi�cantly smallerthan that of M and K dwarfs, according to equation (3.1), the tidal radius for agiant is potentially an order of magnitude greater than that of an M dwarf. Thismeans that the disruption of a giant can occur within a greater volume than thecase for an M dwarf, so that the mass stripped from giants might be comparableto that from low mass stars. However, when this problem was considered by Lacyet al. (1983), in the context of the center of the Milky Way, they found that thedisruption of giants is not a major source of material. In producing this result,they estimated that the number density of red giants NRG is � 10�3NMS, whereNMS is the number density of main{sequence stars. In addition, they assumed that



53the typical radius of a red giant is 20RMS . This leads to a disruption rate for redgiants which is only a few percent of that for main{sequence stars. The disruptionof giants is important for black holes with a mass greater than 108 M�, as the tidalradius for main{sequence stars for such large black holes is actually smaller thanthe size of the event horizon. This means that main{sequence stars will simply beswallowed without being disrupted. Giant stars, however, will still be disruptedand can provide fuel for the central AGN. For the purposes of the present work,however, it will be su�cient to consider the disruption of main{sequence stars,represented in our simulations by polytropes.The units employed for our calculations set 1 R� = 1 M� = G = 1, resultingin the code units given in Table 3.1. In all cases, the star has a mass of 1 M�and a radius of 1 R�. The orbit of the star is initially parabolic in all cases. Theorbital plane is the x{y plane, so the star is compressed in the z{direction duringthe pancake phase. Therefore, we have aligned the hz axis of the spheroidal kernelalong the z{axis. The simulations with n = 3=2 use 5093 particles, while the n = 3simulations use 2351 particles. The particles are initially placed on a hexagonallattice, and the spacing of the particles in both cases is identical. The reason thatthe two cases have di�erent numbers of particles is because in the n = 3 case, theparticles do not extend as far out spatially as in the n = 3=2 case. This is a resultof the more centrally concentrated nature of the n = 3 polytrope. To have used5093 particles in the n = 3 case would have resulted in the ine�cient situation ofover half of the particles representing less than 0.4% of the mass of the star. In allcases the kernel of each particle is initially spherical with a radius of 0.1, leadingto a typical particle having 40{45 neighbors. We restrict hzz to become no smallerthan 0.001, unless otherwise noted. The volume of a particle's kernel is not allowedto increase if the particle has more than 100 neighbors. The constant gravitational



54Table 3.1: Units used in these calculations.Quantity Code UnitDistance 6:960 � 1010 cmMass 2:000 � 1033 gTime 1:590 � 103 sVelocity 4:378 � 107 cm/sDensity 5:932 g/cm3Energy 3:833 � 1048 ergssmoothing length � is set to a value of 0.05, one{half of the starting value of hzz .The only time the separation between particles becomes small compared to � isduring the pancake phase. However, at this point, the internal energy of the gas isconsiderably larger than the self{gravitational potential of the star, so excessivelysmoothing the gravitational interaction of the particles should not have a signi�cante�ect. Finally, the viscosity coe�cients used in the modi�ed viscosity term givenby equation (2.29) are �1 = 1 and �2 = 2, which are typical values used in SPHsimulations.We use a third{order Runge{Kutta integrator with adaptive time steps(Fehlberg 1969) to solve the equations of motion and energy (we use internalenergy to close our set of equations). We found a high{order integrator necessarybecause we perform the computation in the frame of the center of mass of thesystem. Using a second{order method resulted in considerably smaller time steps,and the extra derivative evaluation of the third{order method was compensatedfor by a larger time step. We also use double{precision variables to represent theposition, velocity, and force on a given particle. This was necessary because theinternal hydrodynamic forces of the star can be several orders of magnitude smallerthan the gravitational force due to the black hole. Since the tidal force is due to



55the di�erences in these large values, it was necessary to be able to represent a largedynamic range accurately in order to follow the hydrodynamics properly.The energy conservation in these calculations varied depending on the strengthof the encounter and the mass of the black hole. But it was typically good to 5%of the binding energy of the star for Mbh = 106 M�, with a few cases of the errorbeing greater. For Mbh = 104 M�, we found the error was a factor of 5{10 less thanfor Mbh = 106 M�. After considerable investigation into the nature of this energyerror, we believe that errors due to the handling of the hydrodynamics are minor.The primary source of error is in the integration of the orbit of the star about theblack hole. A small error in the location of the center of mass of the star can leadto a considerable error in the total energy, due to the steep gravitational potentialwell of the black hole. The energy error was greater in the Mbh = 106 M� casebecause the potential well was deeper.Our primary motivation for performing these calculations was to determinehow much mass is lost from the star for an encounter with a given � and polytropicindex n. In order to determine the fate of the material stripped from the star,we employed the following algorithm, which was inspired by a similar methoddescribed by Lai et al. (1993). One �rst assumes that a gas particle can belongto one of three components: the star, the black hole, or free material unboundfrom both the star and the black hole. Initially, one assumes that all of the gasparticles are part of the star component. One then computes a speci�c energy foreach particle relative to the black hole and relative to the star. The form of thespeci�c energy for particle i relative to component k (where k can be either thestar component or the black hole component) is�i;k = ui + 12v2rel;k � 
i;k ; (3.5)



56where ~vrel;k = ~vi � ~Vk : (3.6)Here, ui and ~vi are the internal energy and velocity of particle i. The velocity ~Vk isthe center of mass velocity of component k, and 
i;k is the gravitational potentialof particle i relative to component k. This means the potential relative to all otherparticles in the star component must be calculated to determine 
i;?. But, for theblack hole component, only the potential of the particle relative to the black holeis determined; the other gas particles in the black hole component are ignored.Likewise, the center of mass velocity of the black hole component ignores the gasparticles in the black hole component, using only the center of mass velocity of theblack hole instead.Once �i;k is computed for each particle relative to the star and black holecomponents, one then reassigns each particle to the appropriate component. If theparticle has a negative speci�c energy relative to the star component, the particleis given to the star component. If the particle is unbound from the star, but boundto the black hole, it becomes part of the black hole component. Lastly, if it isunbound from both the star and the black hole, the particle is then considered partof the unbound component. When all particles have been reassigned, the wholeprocess is iterated again. This includes recalculating ~V? and 
i;? for each iteration.When each particle remains in the same component for two consecutive iterations,the procedure has converged for that particular time in the simulation. At the startof the simulation (t = 0), all of the material is in the star component. After closestapproach, material is stripped from the star so that the amount of material in theunbound and black hole components increases, whereas the amount in the starcomponent decreases. We stop the simulation when the mass in each component



57has settled down to a constant value. For weaker encounters (� < 1), the star hasmoved to a distance of � 20rt at this time, while for strong encounters with � ' 3or greater the convergence is much more rapid.3.3 Results for n = 3=2These models are intended to simulate the mass stripping from a fullyconvective star, corresponding most closely to main{sequence stars with a massless than 1 M�. A polytrope of solar mass and radius was used for each of thecases presented here. The ratio of speci�c heats was given a value of 
 = 5=3.The majority of these runs were computed with Mbh = 106 M�, which is withinan order of magnitude of the suspected central black hole mass in many nearbygalaxies (see Kormendy 1993 for a recent review). The tidal work done on the starfor a given � should be fairly independent of Mbh for all Mbh �M?. It was shownby Press & Teukolsky (1977) that the energy pumped into the star is dominated bythe quadrupole tide (the l = 2 oscillation), and that the magnitude of this mode isdependent only on � and independent of Mbh for Mbh � Mstar. As shown earlier,� = ��3=2, meaning the energy deposited into the star is also only dependent on �,independent of the mass of the black hole. In order to test this hypothesis, we havecomputed a selected set of the Mbh = 106 M� cases with Mbh = 104 M�.We begin the presentation of our n = 3=2 results with an examination of thequantity of material stripped from the star as a function of �, as well as the fallbacktime of the debris (Section 3.3.1). In Section 3.3.2, the pancake phase and theincrease in central density for a given � will be discussed. Finally, in Section 3.3.3,the energy pumped into the star for nondisruptive encounters will be examined andcompared to the �nite{di�erence calculations of Khokhlov et al. (1993).



58Table 3.2: Mass fractions for n = 3=2 and Mbh = 106 M� as a function of �.� Mstar Mbh Mfree0:4 1:000 0:000 0:0000:5 1:000 0:000 0:0000:6 0:964 0:018 0:0170:7 0:781 0:111 0:1080:8 0:503 0:255 0:2421:0 0:094 0:453 0:4531:5 0:076 0:459 0:4652:0 0:000 0:500 0:5003:0 0:000 0:500 0:5005:0 0:000 0:500 0:5003.3.1 Stripped MaterialUsing the iterative procedure outlined in Section 3.2, we have determined themass fraction of the star that ends up either bound to the black hole (Mbh), boundto the star (Mstar), or unbound from both the star and the black hole (Mfree). Themass fractions for the n = 3=2 runs are given for Mbh = 106 M� in Table 3.2, andfor Mbh = 104 M� in Table 3.3. Both tables are plotted together in Figure 3.2. Asexpected, since Mbh � M? in both cases, the two tables are in good agreement.The amount of material stripped increases rapidly near � = 0:8, with only 4%being stripped for � = 0:6, while over 90% is stripped for � = 1.The transition from minimal mass loss to almost complete disruption is shownin Figure 3.3, which displays the density in the orbital plane for several valuesof � at the time when the star has moved a distance of 7rt from the black hole.The innermost contour is at 80% of the maximum density of the material, and thesubsequent contours are a factor of 10 smaller than the previous. There is clearly a
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Fig. 3.2.| The stripped mass fractions for an n = 3=2 polytrope. The �lled trianglesand the solid curve are the results for a black hole mass of 106 M�, and the opensquares are the results for 104 M�.
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a b

cFig. 3.3.| Density of the star in the orbital plane for several n = 3=2,Mbh = 106 M�encounters: (a) � = 0:6, (b) � = 0:8, and (c) � = 1. In each case the star has alreadymade its closest approach to the black hole and has now moved to a distance of 7rt.The innermost contour is at 80% of the maximum density, and each subsequentcontour is a factor of 10 smaller. The values of the innermost contour for theseframes are (a) 0.532, (b) 0.0448, and (c) 0.0130.



61Table 3.3: Mass fractions for n = 3=2 and Mbh = 104 M� as a function of �.� Mstar Mbh Mfree0:6 0:962 0:022 0:0150:8 0:542 0:247 0:2111:0 0:096 0:442 0:4633:0 0:000 0:509 0:491remnant of the original star present for the case of � = 0:6, with only a few percentof the mass of the original star ripped away in the form of two tails. A considerablyweaker remnant is still present in the case of � = 0:8. Finally, for � = 1, the stellarremnant is almost completely gone and the vast majority of the material extendsinto two large tails. For a given �, the mass in each tail is roughly equal. One tailcontains the material unbound from both the star and the black hole, while thematerial in the other tail will fall back onto the black hole.Although the mass stripped for a given � is fairly independent of the black holemass, the resulting speci�c energy and period distributions of the material boundto the black hole di�ers considerably. A good estimate of the expected spread inthe speci�c energy of the gas after disruption is given by (Lacy et al. 1982)�� ' G Mbh R?R2p ; (3.7)where Rp is the closest approach of the star to the black hole. Like Evans &Kochanek (1989), we will use the speci�c energy distribution dM=d� (measuredin units of M� (��)�1), and the period distribution dM=dP (measured in unitsof M� yr�1). These distributions are given for selected � in Figure 3.4 forMbh = 106 M� and Figure 3.5 for Mbh = 104 M�. The distributions for � = 1 andMbh = 106 M� compare favorably to those given by Evans & Kochanek (1989).
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Fig. 3.4.| Energy and period distribution of stripped material for di�erent valuesof � for a black hole mass of 106 M� and polytropic index n = 3=2: (a) � = 0:8, (b)� = 1, and (c) � = 3.
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Fig. 3.5.| Energy and period distribution of stripped material for di�erent valuesof � for a black hole mass of 104 M� and polytropic index n = 3=2: (a) � = 0:8, (b)� = 1, and (c) � = 3.



64The characteristic feature of the speci�c energy distribution is a broad, 
atpeak with a width of order 2��. Our simulations show that the width of thepeak does not appear to depend strongly upon �. We note that in the caseswhere the star is not completely disrupted, there is also a sharp inner peak thatcorresponds to the material in the stellar remnant. Assuming that the speci�cenergy distribution dM=d� is constant, one can derive a period distribution of(Rees 1988; Phinney 1989; Evans & Kochanek 1989)dMdP ' 13 M?Pm � PPm��5=3 ; (3.8)where Pm is the shortest period of the gas bound to the black hole.Because the true dM=�� is not a 
at curve, the power law dependence ofdM=dP will not start at the shortest period of the bound gas in our numericalexperiment. Instead, it will start at a period which corresponds to the speci�cenergy where dM=�� becomes 
at. Due to the steep sides of the speci�c energydistribution curve, the power law dependence of dM=dP starts at approximatelyits peak value. For the sake of comparison, a P�5=3 power law normalized to thepeak of dM=dP has been plotted in each of the period distributions presented inFigures 3.4 and 3.5. One �nds that for � > 1, there are discrepancies between thenumeric and analytic predictions. This is due to the fact that for larger �, thespeci�c energy distribution has become quite rounded. Even so, the spread in thespeci�c energy of the gas does not vary much for the range of 0:6 � � � 5. Theperiod at which the peak of dM=dP occurs is also fairly independent of �. This,coupled with the fact that dM=dP is roughly a power law for all �, means onecan reasonably assume that for given Mbh, the time scale for stripped material toreturn to the vicinity of the black hole is independent of � over the range of ourcalculations, 0:6 � � � 5.



653.3.2 The Pancake PhaseA point that has lead to a number of controversies between numerical modelsand analytical calculations is the increase in central density and temperature duringthe pancake phase. Carter & Luminet (1983) �rst suggested that for extremeencounters (� > 5), the enhancement in density and temperature is enough to causesigni�cant energy release from nuclear burning. This additional energy could blowthe star apart with enough force that very little of the escaping material could becaptured by the black hole. In regard to AGNs, this would mean that encounterswith a � greater than some threshold value would, contrary to intuition, yieldvery little material to fuel the black hole. Subsequent numerical work by otherresearchers using SPH simulations yielded the conclusion that Carter & Luminethad overestimated the magnitude of the enhancement (Bicknell & Gingold 1983;Laguna et al. 1993). Carter & Luminet determined that the central density ofthe star would scale by a factor of �3 during the pancake phase, whereas Bicknell& Gingold and Laguna et al. reported a factor of order �3=2. Unfortunately, weare not aware of any numerical simulations based on �nite{di�erence codes ofencounters with larger values of �. These would have helped in determining thetrue scaling law, as both the analytical and the SPH simulations su�er from anumber of limitations. The latter ones are reviewed brie
y below.In Chapter 2, we have given a lengthy discussion of the possible reasons for thediscrepancy between the �ndings of Carter & Luminet and the SPH simulations. Tosummarize, we believe the reasons to be related to the use of spherically{symmetrickernels and a form of arti�cial viscosity that generates entropy even in homologouscontraction. The latter point is interesting. We �rst note that the componentperpendicular to the orbital plane of the gravitational acceleration due to the



66black hole at any radius is proportional to the height above the plane. Thus, thecompression of the star along this direction will be nearly homologous as long as thepressure gradients inside the star remain small compared to the gravitational pullof the black hole. During homologous contraction, entropy should be conserved.Unfortunately, the standard form of the SPH arti�cial viscosity is a function ofvelocity di�erences on a pairwise basis, which leads to energy dissipation even inhomologous collapse, increasing the entropy of the gas. The gas being on a higheradiabat, pressure gradients are stronger at a given density, and the star bounces atlower density, explaining part of the di�erences found between the numerical SPHsimulations and the analytical results of Carter & Luminet.Another problem with previous SPH simulations has been the use of sphericalkernels. During the pancake phase of the star, the spatial resolution along thedirection of collapse can become very poor. We have avoided this problem bypioneering the use of spheroidal kernels, which allow signi�cantly better spatialresolution without requiring the use of more particles. In Chapter 2, we have givena full development of our method of spheroidal kernels.To emphasize the considerable improvement that spheroidal kernels provideover spherical kernels, consider Figure 3.6. This �gure shows a time series of thedensity in a plane perpendicular to the orbital plane, aligned along the longest axisof the distorted star, for the � = 5 encounter. The x{axis is along the longestaxis of the star, while the z{axis is perpendicular to the orbital plane. Note thatthe plotting scales used for each axis are not the same. At the time of maximumcentral density, the star has collapsed by a factor of almost 20 in the z{direction.It would be very di�cult to model this collapse using spherical kernels, since ifone was to shrink the kernels su�ciently for adequate spatial resolution in the
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Fig. 3.6.| Time series showing the density in a plane aligned along the longest axisof the star for an n = 3=2, Mbh = 106 M�, � = 5 encounter. The collapse of the staris parallel to the z{axis. The time for each frame, relative to the time of maximumcentral density, are (a) -0.0438122, (b) 0.0246374, (c) -0.0129947, (d) -0.0053219,(e) 0.0000700, (f) 0.0073592, (g) 0.0219012, (h) 0.0324701, and (i) 0.0455705. Theinnermost contour has a value of (a) 2.43, (b) 3.90, (c) 6.09, (d) 8.37, (e) 9.14, (f)7.87, (g) 4.27, (h) 2.88, and (i) 1.97. All other contours are smaller than the previousby a factor of 2.



68z{direction, particles would not overlap with other particles in the lateral directionswith similar values of z. This would mean that the neighbors of a given particlewould only be those directly above and below it in the z{direction. With no moresonic contact inside the orbital plane, the problem has been reduced essentially tothe calculation of a number of poorly{resolved, one{dimensional problems. Withspheroidal kernels, we are able to maintain contact between particles in the planeparallel to the orbital plane until the star has extended itself and formed tails ofstripped material. At this point, hydrodynamic forces are negligible because thematerial has very low density and internal energy.It is worth pointing out that merely increasing the number of particles butkeeping the kernel spherical is not an alternative to the use of spheroidal kernels.First, we note that matching the resolution perpendicular to the orbital planeduring the pancake phase of a � = 5 encounter would require � 3:5� 105 sphericalparticles (Section 2.2.2). However, even if this number is used, the scaling of thespherical kernel will still result in the breakdown of the hydrodynamics parallelto the orbital plane, as particles would be out of sonic contact. This illustrateswell the numerical di�culties of these types of simulations which, at �rst glance,appeared to be well tailored to the SPH technique.The magnitude of density enhancement for several Mbh = 106 M� models aregiven in Table 3.4, and shown in Figure 3.7. It should be noted that since ourcode is based on purely Newtonian mechanics, encounters with � = 10 in whichthe star comes within a couple of Schwarzschild radii of the black hole are notmeant to represent the dynamics accurately, but were run only for the purposeof determining the density scaling law. The next level of simulation would be toinclude relativistic e�ects in our code.



69Table 3.4: Magnitude of density enhancement for n = 3=2 calculations.� �max=�01:0 1:0011:5 1:0002:0 1:1823:0 2:3435:0 7:78910:0 46:892Another concern in the simulation of very deep encounters, say � = 10, isagain a purely SPH problem. As with all particle methods used in 
uid dynamics,it is essential to prevent particles from two colliding streams to penetrate. Pressuregradients and arti�cial viscosity should prevent such streaming. While this isgenerally the case, we have observed these problems to increase signi�cantlywith increasing �. This can be checked easily by computing how many particlescrossed from one side of the orbital plane to the other side during the encounter.While there clearly should be none, we found that in the case of the � = 10simulation, 10% of the mass of the star streamed through the orbital plane. Sincethese problems occur essentially in the outer regions of the star where the typicalparticle has a smaller number of neighbors, we don't believe the central densityenhancement is a�ected much by this. Fortunately, since the particles whichstream are concentrated near the surface of the star, by increasing the number ofparticles used in the simulation, one should be able to reduce the fraction of thestar which streams. We note that the SPH simulations of Laguna et al. update theposition of particles using a correction term computed from the local mean velocity(Monaghan 1989). While this indeed stops penetration and streaming, it has thedisadvantage of no longer conserving total energy when an external force (in our
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Fig. 3.7.| Central density enhancement as a function of � for n = 3=2.case, the gravitational force of the black hole) is applied; thus, we discard suchtechnique here.Even with these reservations about our modeling of a � = 10 encounter, thedensity enhancement values for � = 3; 5; and 10 fall nicely along a �2:5 power law.A more exact �t (shown in Figure 3.7 as a dotted line) gives�max�0 = 0:147 �2:49 : (3.9)Here, �max is the maximum density at the center of the star during the entiresimulation, and �0 is the initial density at the center of the star. This result iscloser to the �3 power law of Carter & Luminet than previous SPH investigations.One reason for this better agreement is the fact that our modi�ed viscosity termled to very little viscous heating during the collapse of the star. Let us de�ne theentropy S as S = (
 � 1) ln((
 � 1)u�(
�1) ) : (3.10)



71
Fig. 3.8.| Entropy shown as a function of height in the collapsing stellar atmospherein the � = 5 model with n = 3=2 and Mbh = 106 M� models. The curve is at thetime of maximum central density.In Figure 3.8, the entropy of the star is given as a function of height at the timeof maximum central density for the � = 5 model. The values plotted are alonga line which passes through the center of mass of the star and is perpendicularto the orbital plane. The dashed line gives the initial (constant) value of entropythroughout the star. The density along the same cut through the star is shownin Figure 3.9. If the star collapses adiabatically, then the entropy should remainconstant. The departure of the entropy in the outermost gas from the originalvalue shows this is where shock heating has occurred. The innermost material ishalted by the increase in pressure due almost solely to the adiabatic compressionof the gas, just as in the models of Carter & Luminet. The shock heating of theoutermost material could be the reason we do not observe as much of a densityenhancement for a given � as Carter & Luminet.One of the assumptions of the a�ne model used by Carter & Luminet is that
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Fig. 3.9.| Density shown as a function of height in the collapsing stellar atmospherein the � = 5 model with n = 3=2 and Mbh = 106 M� models. The curve is at thetime of maximum central density, and is scaled by the initial central density of thestar �0. The interval bars show a distance of hzz in each direction.contours of equal density remain concentric ellipsoids. From Figure 3.6, one canclearly see that this assumption is not true near the time of maximum centraldensity for our � = 5 encounter. For encounters with � > 5, the situation becomeseven worse. The best way to visualize what these encounters would look like is toimagine pulling a sponge through a very small ring. At the location of the ring, thesponge undergoes maximal compression, and, as one moves away from the ring, thecompression decreases. Our departure from the result of Carter & Luminet may bein part due to the breakdown of the a�ne assumption for these extreme encounters.Another possible reason for the di�erences is that in our initial conditions, thegas particles only extend to approximately 86% of the radius of the star to whichthe model is supposed to correspond. In the initial model, we pack our particles ona hexagonal lattice with a spacing roughly equal to the initial smoothing length
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Fig. 3.10.| Ram pressure as a function of height in the collapsing stellar atmospherefor the same � = 5 model as Figure 3.8. The curve is taken just before the time ofmaximum central density.of the particles. For the number of particles used in these simulations (5093), theoutermost layer of the hexagon grid is of order 86% of the radius of the actual star.If this gas had actually been present in the simulation, a higher pressure wouldhave been required at the center of the star to halt the collapse of the atmosphere.To assess the importance of the missing outer 14% in radius of the star, we plot inFigure 3.10 the ram pressure �v2 just prior to reaching maximum central densityin our � = 5 simulation. We see that the ram pressure reaches a maximum valueapproximately midway to the surface of the star and falls o� rapidly towards thesurface. Thus, we believe extending the star to its true radius would lead to anegligible increase in the central density enhancement.In an attempt to understand the e�ect of numerics on our solution, a � = 5 runwith 14591 particles was also calculated. The particles now extend to 90% of thedesired radius of the star. The increase in the maximum central density, normalized



74
Fig. 3.11.| Similar to Figure 3.8, except that this �gure is for a run with 14591particles instead of 5093.to the initial center density, was 8.00. This compares favorably to the value of 7.79from the run with 5093 particles. In Figures 3.11 and 3.12, the run of entropy anddensity versus z are shown for the calculation with 14591 particles, and should becompared to Figures 3.8 and 3.9, which are for the run with 5093 particles. Theprinciple di�erence is that the entropy jump near jzj = 0:04 is sharper in the casewith 14591 particles, most likely due to the improvement in spatial resolution thatcomes with more particles. Overall, this result shows that the density enhancementfor the case of � = 5 is not signi�cantly more than 8, and that our result is fairlyindependent of the number of particles used in the calculation.3.3.3 Tidal Energy TransferThe emphasis of these calculations has been to model the stripping of materialfrom the star. In the case where material is not stripped from the star, there is
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Fig. 3.12.| Similar to Figure 3.9, except that this �gure is for a run with 14591particles instead of 5093.the possibility that the star will become tidally captured (Fabian et al. 1975). Theenergy required to deform the star reduces the energy of its orbit around the blackhole. Since the star was initially in a parabolic orbit, after deformation it will bein an extremely eccentric elliptical orbit with roughly the same closest approachto the black hole. The next encounter with the black hole will possibly furtherdeform the star, reducing the energy of its orbit more. Semi{analytic calculationsof the work done on the star have been computed (Press & Teukolsky 1977; Lee& Ostriker 1986). Additionally, three{dimensional hydrodynamic calculations forvarious polytropic stars using a grid{based code are now available (Khokhlov et al.1993). In Figure 3.13, we compare our values of T2(�) to those given in Khokhlovet al. and Lee & Ostriker. The quantity T2(�) is de�ned (Press & Teukolsky 1977)to be T2(�) = �4�E ; (3.11)
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Fig. 3.13.| Energy transfer to the star for n = 3=2 models. The open triangles arethe results from this work, the open squares are from Khokhlov et al. (1993), andthe solid curve is from Lee & Ostriker (1986).where �E is the quantity of energy transferred to the star from its orbital energyduring the encounter. Our result for � = 3:95 falls near the result expected fromlinear theory, and is where the results of Khokhlov et al. appear to indicate thedeparture from linear theory should start. Our value for � = 2:83 also appearsto be consistent with the results of Khokhlov et al. The points near � = 2 areshown as lower limits, since, at the end of the simulation, the value of T2(�) wasstill increasing. In these cases, a small amount of material was stripped from thestar. That both SPH and the grid{based FCT (
ux corrected transport) methodemployed by Khokhlov et al. agree so well is reassuring, since the two methods useradically di�erent approaches to solve the equations of hydrodynamics.The amount of energy pumped into the star in these cases is of order 1% ofthe binding energy of the star. We found that the error in total energy, however,was about 3% of the binding energy of the star for these cases. The fact that our



77results agree so well with Khokhlov et al. is further evidence that the error in totalenergy in our calculations is dominated by errors in the position of the center ofmass of the star, as described earlier in this paper. These errors do not appear tosigni�cantly a�ect the modeling of tidal forces acting on the star.3.4 Results for n = 3In order to examine how mass loss was a�ected by the internal structureof the star, we also performed a number of simulations in which the star wasapproximated by an n = 3 polytrope. Unlike the n = 3=2 model from the previoussection, the star in this case does not have constant entropy throughout, since
 6= (1 + 1=n). While the initial structure of the star corresponded to an n = 3polytrope, the evolution was computed assuming a matter{dominated gas forwhich we set 
 = 5=3. To allow direct comparison with the results of the n = 3=2simulations, we kept the radius and the total mass �xed at solar values. Thus, asshown in Figure 3.14, the central density of the n = 3 star is a factor of 8 greaterthan the central density of the n = 3=2 star. The mass inside of a given radius ris plotted in Figure 3.15. The steps in this �gure at small R are due to the factthat there are no particles in the region 0 < R < 0:1, meaning the cumulativemass stays constant over that range. The half{mass radius for the n = 3=2 staris at approximately r = 0:5, while for the n = 3 star, the half{mass radius occursat r = 0:27. These characteristics make our n = 3 model more representativeof stars of solar mass or greater. But it should be noted that our n = 3 modelwill primarily be used in this preliminary survey of the tidal disruption process tocompare with the n = 3=2 model in order to probe the dependence of mass loss onthe density pro�le of the star. The next stage will be to use realistic stellar models
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n=3

n=3/2

Fig. 3.14.| Comparison of the density pro�les of the n = 3=2 (triangles) and n = 3(squares) models. Code units are used for both axes of this �gure.
n=3/2

n=3

Fig. 3.15.| Comparison of the cumulative mass pro�les of the n = 3=2 (triangles)and n = 3 (squares) models. Code units are used for both axes of this �gure.



79Table 3.5: Mass fractions for n = 3 and Mbh = 106 M� as a function of �.� Mstar Mbh Mfree0:60 1:000 0:000 0:0000:75 0:998 0:001 0:0010:90 0:983 0:009 0:0081:00 0:955 0:023 0:0221:25 0:807 0:097 0:0961:50 0:595 0:205 0:2002:00 0:216 0:379 0:4053:00 0:000 0:499 0:5015:00 0:000 0:499 0:501for these calculations. Because of the overall similarity of the n = 3 and n = 3=2results, we will concentrate on only the di�erences between the two cases. The starundergoes a similar deformation in either case, and, for high enough values of � thestar will 
atten into a pancake{like shape. The most signi�cant di�erence is thatthe binding energy of the n = 3 polytrope is larger than the n = 3=2 polytrope, soit requires a deeper plunge to completely disrupt the star in the n = 3 case. Thefractions of the star which goes into the three components introduced above aregiven in Table 3.5 for a black hole mass of Mbh = 106 M�. The values for a blackhole mass of 104 M� are nearly identical, as in the case for n = 3=2, so they arenot given. In Figure 3.16, the mass fractions are plotted for both the n = 3 andn = 3=2 cases. As anticipated, the star must come closer to the black hole in then = 3 case in order for it to be completely disrupted. Another interesting di�erencebetween the n = 3=2 and n = 3 runs is the width of the speci�c energy distributionof the debris. For a given value of �, the n = 3 distribution is wider. The speci�cenergy distribution and period distribution for � = 3, n = 3 is given in Figure
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Fig. 3.16.| The stripped mass fractions for both the n = 3=2 and n = 3 polytropes.The black hole mass in both cases is 106 M�. The �lled triangles are the n = 3=2results, while the �lled squares are the results for n = 3.
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Fig. 3.17.| Energy and period distribution of stripped material for various � = 3encounters with a black hole of 106 M�: a) n = 3 and 2351 particles, b) n = 3 and4961 particles, and c) n = 3=2 and 5093 particles.



823.17. There are actually two di�erent � = 3 runs shown, one computed with 2351particles and the other with 4961 particles. Also plotted is the � = 3, n = 3=2 runoriginally shown in Figure 3.4. Note that the two n = 3 runs agree well, with the4961 particle run giving better statistics. In addition, the 4961 particle run gives abetter treatment of the outer layers of the star. This is evidenced by the extensionof the period distribution derived from 4961 particle to longer periods than seenfrom the 2351 particle run. Another feature to note is that, in the case of n = 3,the material returns to the vicinity of the black hole on a time scale that is abouthalf that of the n = 3=2 case. However, due to the current uncertainty of whathappens to the debris once it returns to the black hole (see Rees 1990 for somepossibilities), the di�erence in time scales for n = 3=2 and n = 3 may not be thatsigni�cant in terms of what a tidal disruption event would look like to an observer.Therefore, we believe that the most signi�cant di�erence between the two modelslies in the fact that the n = 3 model would require a closer encounter than then = 3=2 model to lose the same amount of mass.3.5 ConclusionsOur models agree well with earlier numerical simulations, either SPH or�nite{di�erence, for mild encounters with � � 1. For encounters with � � 5,however, we di�er signi�cantly with previous SPH calculations that are the onlycalculations currently available in this regime. We believe that these di�erencesstem from the use of spherical kernels, which do not provide adequate spatialresolution during the strong pancake phases, and by an arti�cial viscosity termwhich led to extraneous shock heating, causing the star to bounce at too low acentral density. We are able to circumvent these di�culties by using spheroidal



83kernels and a modi�ed arti�cial viscosity.While our results still do not recover the �=�0 / �3 scaling of Carter &Luminet, we obtain a much steeper dependence of central density increase withclosest approach than all previous SPH simulations. We obtain a central densityscaling of �2:5, which is interestingly close to the analytic value. It is not clearif the di�erences between the two values reside in further limitations of thenumerical methods (truncation of the polytrope, Newtonian mechanics even in deepencounters, etc.) or to assumptions behind the analytic model (elliptical densitypro�les, no shock dissipation, etc.). However, even though there might be stillsome uncertainty with the outcome of very close encounters, they are infrequent,and their overall importance on the feeding of the black hole is correspondinglyreduced.The main focus of this work has been to derive the amount of mass lost froma star for a given strength encounter with a black hole. We �nd, as expected,that the amount of mass lost for a given strength encounter (measured by �) isindependent of the mass of the black hole over a range of 104 to 106 M�. Alsoas expected, the more centrally concentrated n = 3 polytrope requires a strongerencounter to be completely disrupted than the n = 3=2 polytrope. The mass lostas a function of �, presented in Tables 3.2 and 3.5, will allow the improvement ofestimates of the rate at which an AGN can be fed by the tidal disruption of stars.This will be the subject of the next chapter.
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Chapter 4THE TIDAL DISRUPTION OFSTARS IN GALACTIC NUCLEIThere is kinematic evidence that an � 106 M� black hole exists at the center ofthe Milky Way (Serabyn & Lacy 1985). Yet, our galactic center does not exhibitany signs of particular activity such as those normally expected from accretingblack holes of this size (high energy photons, short time scale luminosity variations,etc). The usual explanation for this lack of activity is to assume the black hole tobe starved of fuel. While it is conceptually possible to envision a central regiondevoid of \free" gas, the tidal disruption of stars entering the black hole's Rochelimit after having di�used onto nearly radial orbits is unavoidable and have beencomputed to occur once every 104 years in the case of a 106 M� black hole (Cohn1978). Such encounters necessarily supply the black hole with a signi�cant quantityof gas, which should give rise to detectable activity lasting as long as the accretionprocess. Our galactic center should therefore experience a period of relativelyintense activity, followed by an extended period of quiescence which might be the



85dominant state if the accretion of the tidally{captured debris occurs on time scalesthat are short compared to successive tidal disruptions.This scenario is not restricted to the Milky Way alone, as the case can bemade that most bright galaxies have a central black hole with a mass of 106 solarmasses or more (Boyle et al. 1987; Rees 1990). And yet, again these galaxies donot exhibit any signs of particular activity, earning the label \dead quasars" fromRees (1990). While these galaxies might be starved of \free" gas, they cannotavoid the tidal disruption of stars on nearly radial orbits. Thus, we conclude thatthese galaxies must be observed currently in the quiescent state between successivedisruption, their activity level increasing signi�cantly for a short period of timeafter each disruption. Since such events are expected to produce an X{ray 
are fora time scale of a few months to a year (Rees 1988), their systematic detection inthe center of galaxies would provide strong evidence for the existence of massiveblack holes in most galaxies. A number of observations claiming the detection ofsuch events have been published, and we will review them in Section 4.4.The study of the feeding of a massive black hole by the tidal disruption ofstars requires the understanding of several important physical processes. Theseinclude not only the physics of the disruption process itself and the determinationof the amount of mass bound to the black hole, but also the determination of thefrequency at which such encounters take place, as well as the details of the �nalaccretion by the black hole of the captured debris and the expected observationalconsequences.Since until recently numerical simulations of the actual tidal disruption ofstars venturing too close to the black hole were not possible, previous investigations(e.g., Duncan & Shapiro 1983; Murphy et al. 1991) relied on simple assumptions.



86In particular, it has been assumed that a star is disrupted if it passes closerthan a distance rt from the black hole (which we will refer to as the hard{sphereassumption). Once disrupted, the entire mass of the star is accreted by the blackhole. In this work, we will de�ne the radius rt asrt = �MbhM? �1=3R?= 100R�  Mbh106 M�!1=3 �M�M? �1=3 R?R�! ; (4.1)where Mbh is the mass of the black hole, and M? and R? are the stellar mass andradius of the star, respectively. Our de�nition of rt is comparable but not exactlyidentical to the Roche radius. Clearly, the disruption process is more complicatedthan assumed in the hard{sphere model. For very distant encounters, the star willmerely deform and not lose material. For somewhat closer encounters, the star willbegin to lose the outer layers of its atmosphere, but the remainder of the star willremain intact. The star will not experience signi�cant mass loss until the energypumped into the star by tidal forces is comparable to the binding energy of thestar. In the limit of very strong encounters, the star will be completely disruptedand half of the debris will be bound to the black hole (Lacy et al. 1982). This limitis a result of the process by which the star is disrupted. In a strong encounter, thestar is �rst stretched out into a cigar{like shape. The tidally{induced torque onthe star then causes the star to spin{up and disrupt. Two tails of roughly equalmass are thrown out, one bound to the black hole and the other unbound. Inorder to explore this spectrum of encounters, we seek to compute the amount ofmass stripped from a star as a function of its impact parameter b with the blackhole. For weak, distant encounters, one can use a linear treatment of the problemto compute how much energy is pumped into the star (Press & Teukolsky 1977).The linear treatment, however, becomes invalid for the stronger encounters where



87mass is stripped from the star and numerical simulations become necessary tounderstand these cases.Smoothed Particle Hydrodynamics (SPH) is a robust, e�cient computationaltechnique that allows three{dimensional problems to be solved on modern{dayworkstations. In Chapter 2, we described the SPH method we have developed inorder to model the tidal disruption of stars. It di�ers from the traditional SPHmethod by utilizing spheroidal instead of spherical kernels. In addition, our SPHmethod employs a specially{tailored arti�cial viscosity in order to model shockheating during the disruption of the star more accurately than is possible usingthe traditional SPH method. For simplicity, we have modeled stars as polytropes,although, in principle, it should be possible to use realistic stellar models. InChapter 3, we have presented a catalog of results for the disruption of solar masspolytropes of indices n = 3=2 and n = 3 by a 106 solar mass black hole. Amongthe results presented in Chapter 3 is the desired information about the mass lostby the star as a function of its impact parameter b.In this chapter, we shall estimate the feeding rate of a black hole by the tidaldisruption of stars by using both the hard{sphere assumption and the resultsobtained from our simulations. We shall compare both estimates, which willprovide a sense of uncertainty still a�ecting these rates. However, in order tobe able to determine these rates, we need to �rst de�ne a model for the stellarsystem in which the black hole is embedded. We shall use a King model, otherwiseknown as a truncated isothermal sphere, to represent this stellar cluster. Oncethe stellar cluster model is given, we will employ loss{cone theory (Frank & Rees1976) to calculate feeding rates for two di�erent assumptions of tidal disruption.After comparing these two estimates, we shall review the expected observables of



88a tidally{disrupted star. Finally, we will consider recent claims of observationaldetections of tidally{disrupted stars in other galaxies.4.1 Tidal Disruption of Stars in a Truncated Isothermal Sphere4.1.1 The Stellar Cluster ModelThe prevailing model for an Active Galactic Nucleus (AGN) places a massiveblack hole at its center in the actual nucleus of a galaxy. The black hole has grownto its current size by accreting material originating from several sources. A stellarcollision can lead to the ejection of a fair fraction of the total mass of the twostars. Winds from evolved stars will be another source of free gas. Finally, debrisstripped from tidally{disrupted stars will also be available to feed the central blackhole. The stellar cluster surrounding the black hole is in turn a�ected by the loss ofstars to the black hole. In addition, the orbits of stars which pass in the vicinity ofthe black hole are modi�ed by the considerable gravitational in
uence of the blackhole. The mutual interaction between a stellar distribution and a massive blackhole have been studied extensively (see Shapiro 1985 for a comprehensive review).In summary, the presence of the black hole will cause a high density cusp to format the center of the cluster. This cusp extends out to a distance of approximatelyra = GMbh�2= 0:43 Mbh106 M�!� �100 km s�1��2 pc ; (4.2)where Mbh is the mass of the black hole and �2 is the velocity dispersion of thecluster. Beyond this distance, the in
uence of the black hole is small, and thedistribution function of the stellar orbits is close to that of an isothermal sphere.



89Previous studies have shown that a minority of the stars disrupted will come fromthe central cusp (e.g., Duncan & Shapiro 1983). It is therefore acceptable to modelthe stellar distribution using a truncated isothermal sphere, also known as a Kingmodel (King 1966), and leave the central cusp out of the problem. Having left out apossible source for tidal disruptions, our results should then be viewed as providinga lower limit to the disruption rate. The simplicity of the King model will allowus to concentrate on the impact of using our hydrodynamic results instead of thehard{sphere assumption used in previous work. A future improvement to this workwould be to combine a Fokker-Planck code with our hydrodynamic results in orderto grow self{consistently a black hole inside of a star cluster up to the present.In this current study, we restrict our focus to the e�ect of hydrodynamics on theexpected fueling rate for the black hole.The formalism we will use follows that of Binney & Tremaine (1987). TheKing distribution function (DF) is a truncated isothermal sphere, meaning thatthere are no stars with an energy greater than a threshold value E0, with E0 < 0.All stars will have the same mass M?. The energy per unit mass of a star is givenby E = 12v2 + �(r) : (4.3)The quantity �(r) is the self{potential of the star cluster, and is determined bysolving Poisson's equation, r2�(r) = 4�G�(r) ; (4.4)where �(r) is the stellar density measured in units of mass per unit volume. Auseful change of variables is to choose� � �E + �0;	 � �� + �0: (4.5)



90Because it di�ers from � by only the constant �0, the potential 	(r) also satis�esthe Poisson equation. The outer boundary condition on 	 is 	(ro) = 0, wherero is the radius at which the stellar density � drops to zero. The inner boundary	(0) is traditionally given in units of �2, where � is the one{dimensional velocitydispersion at the center of the cluster. The value of �0 is chosen so that the KingDF fK = 0 for � � 0. Then the King DF is given byfK(�) = 8<: �1(2��2)�3=2 [exp(�=�2)� 1] ; � > 0 ,0; � � 0 , (4.6)where �1 is related to the central stellar density �0 by a constant factor, and servesas a normalization factor for fK . Given fK and Poisson's equation, the mass andradius of the stellar cluster are determined solely by the choice of �0, �2, and	(0)=�2. The core radius Rc, inside of which the stellar density is fairly constant,for the cluster can be de�ned asRc =  9�24�GM?n0!1=2= 1:3 � �100 km s�1��M�M? �1=2  106 pc�3n0 !1=2 pc ; (4.7)where M? is the mass of a star and n0 is the central number density of stars, relatedto the central mass density �0 by n0 = �0=M?.In this section, the stellar cluster referred to has a core radius Rc of order 1 pcfor expected values of �0 � 106 M� pc�3, � � 100 km s�1, and 	(0)=�2 � 8. Withinour own galactic nucleus, studies of the dynamics of gas and stars are consistentwith a cluster having a core radius of � 1 pc (e.g., Haller et al. 1995). Otherwise,unfortunately, only in a few nearby galaxies is it even plausible to observe a centralcluster. The observation is further complicated by the presence of a central blackhole, which will cause the light pro�le to be steeper than that of just a stellarcluster alone. For a proper understanding, one must �t the observations with a



91model including both a black hole and a stellar cluster. For example, a recentHST observation of M32 (Lauer et al. 1992b) was unable to resolve a central core.However, when the observations were compared to calculations by Young (1980)of the growth of a black hole in an initially isothermal core, it was found that acentral black hole of mass 2:8 � 106 M� produced the best �t. In this model, theinitial isothermal stellar cluster had a core radius of 3 pc and a central density of8:4� 104 M� pc�3. Similar observations of M31 (Lauer et al. 1993), M87 (Lauer etal. 1992a), and NGC 7457 (Lauer et al. 1991) were all consistent with the presenceof a compact core at the center of each galaxy. In the case of M31, the situation iseven more complicated, as evidence for a double nucleus was found. Presumably,these galaxies are not rare examples that just happen to be near the Milky Way,and dense stellar cores are present in most, if not all, normal galaxies.4.1.2 Loss{Cone TheoryWe will now examine the following problem: given the stellar cluster modelfrom Section 4.1.1, at what rate do stars pass close enough to the black hole tobe disrupted? A summary of previous work on this problem can be found inShapiro (1985). Past studies have found that the the majority of stars which aredisrupted by a black hole are not bound to the black hole and are on extremelyelongated orbits which take them inside the Roche limit of the black hole (e.g.,Duncan & Shapiro 1983). Let each star be described by its speci�c energy E andspeci�c angular momentum J . For conciseness, however, in this section E will bereferred to as the \energy" of the star, and J will be referred to as the \angularmomentum" of the star. The term \loss cone" describes the portion of (E; J) phasespace from which stars will be disrupted. The loss{cone concept was �rst applied



92to the tidal disruption of stars by Frank & Rees (1976). For stars not bound tothe black hole, the loss cone is actually more of a loss column, as pointed out byCohn & Kulsrud (1978). This is because an unbound star will be disrupted if itsangular momentum J is less than a constant value Jmin, independent of its energyE. As stars are removed from the loss cone by disruptions, new stars are scatteredinto the loss cone by distant encounters with other stars. Let j2(E) be the r.m.s.angular momentum transferred, per orbital period, to a star through encounterswith other stars. Now if j2(E) > Jmin, then stars will re�ll the loss cone at theenergy E as fast as it is depleted, in which case the loss cone is said to be full. Ifj2(E) < Jmin then stars slowly di�use into the loss cone, which is then said to beempty. The transition between a full and an empty loss cone occurs at the energyEcrit given by Duncan & Shapiro (1983)j22(Ecrit)J2min = ln "Jmax(Ecrit)Jmin # ; (4.8)where Jmax(Ecrit) is the angular momentum of a star in a circular orbit of energyEcrit. Stars with E < Ecrit have an empty loss cone, while stars with E > Ecrithave a full loss cone. We will only consider the contribution from the stars withE > Ecrit. To properly handle the stars coming from an empty loss cone requiresthe numerical solution of the Fokker{Planck equation. Fortunately, the contributionfrom stars with E > Ecrit dominate for the black hole masses and stellar clusterparameters which are the focus of this study. However, since we are neglecting thecontribution from stars with E < Ecrit, we will tend to underestimate the totaldisruption rate for the cluster.We will now, given the King DF, �nd the rate at which stars of a given impactparameter b pass the black hole. To do so, we will follow the treatment of theloss cone by Shapiro & Marchant (1978). A star of a given energy E will have an



93impact parameter b if its angular momentum is given byJ2capture(b) = f2(E +GMbh=b)g b2 ' 2GMbhb ; (4.9)where Mbh is the mass of the black hole. The latter approximation is valid becauseE will be of order �2 = 1014 ergs=gm, while GMbh=b will be of order 1019 ergs=gmfor a 106 M� black hole and b = 100 R�, the Roche radius for a solar mass star. Inother words, the velocity gained by a soon{to{be{disrupted star as it falls into thedeep potential well of the black hole is substantially larger than the typical velocityof that same star far from the black hole.It can be shown (Shapiro & Marchant 1978) that the number of stars N(E; J)with an energy between E and E + dE, and an angular momentum between J andJ + dJ , is given by N(E; J) = 8�2fK(E)P (E; J) J dJ dE ; (4.10)where fK(E) is the King DF divided by the mass of the star to give a numberdensity instead of a mass density. The quantity P (E; J) is the period of a star withenergy E and angular momentum J . For a given value of E and J , there are twoturning points in the orbit of the star, r+ and r�. We are interested in the latter.In one orbital period P (E; J), all N(E; J) stars will have had time to pass theblack hole at a distance of r� once. Therefore, the rate F (E; J) at which stars ofenergy E and angular momentum J pass by the radius r� is just N(E; J)=P (E; J),or F (E; J) = 8�2 fK(E) J dJ dE : (4.11)Note that F (E; J) has the dimensions of stars per unit time. A star will have animpact parameter less than a given value b0 if its angular momentum is less thanJcapture(b0). Therefore, the rate F (E; b < b0) at which stars between energies E and



94E + dE and an impact parameter less than b0 pass through pericenter is given byintegrating F (E; J) over J from 0 to Jcapture. Since fK is only a function of E, theresulting integral is trivial and F (E; b < b0) is given byF (E; b < b0) = 8�2GMbhb0fK(E) dE : (4.12)The quantity we seek is the total encounter rate of stars with an impact parameterless than b0, which can be achieved by integrating F (E; b < b0) over E. Oneintegration limit will be E = �0, the energy of a star just bound to the cluster. Theother integration limit will be Ecrit, the energy at which the loss cone goes fromfull to empty. We will neglect the contribution from where the loss cone is emptybecause a proper treatment requires the solution of the Fokker{Planck equation.In doing so, we will underestimate the true rate, but, for the cluster parameters wewill consider, the loss cone is full throughout the majority of the central cluster,and so this approximation will be adequate. To determine Ecrit, we must solveequation (4.8). We will make use of the expression for j22(E) given by Duncan &Shapiro (1983). For Jmin, we use a value of (2GMbhrt)1=2, since, as we will see,for impact parameters larger than rt, the amount of mass stripped from the stardrops quickly. Therefore, the edge of the loss cone, which occurs at an angularmomentum where stars are just disrupted, will be at an angular momentum closeto Jmin. Once we know Ecrit, we can determine the total rate of encounters with animpact parameter less than b0 by integrating over the applicable range of energyF (b < b0) = 8�2GMbhb0 Z Ecrit�0 fK(E) dE : (4.13)The di�erential encounter rate is given by dF=db0. This turns out to be constant,and will be called �0 �0 = 8�2GMbh Z Ecrit�0 fK(E) dE : (4.14)



95The dimensions of �0 merit some explanation. The quantity F (b) is the rate atwhich encounters with an impact parameter of b or less occur. The derivative ofF (b) is the constant quantity �0. The rate at which stars pass between a distanceof b and b + db is given by �0 db, and �0 has the dimensions of stars per unit timeper unit length.4.1.3 Including the Hydrodynamic Details of Tidal DisruptionWe must now turn to our SPH results in order to convert from the di�erentialencounter rate �0 to the di�erential mass stripping rate. Consider a star whichencounters the black hole with an impact parameter b. Let S(b) be the fractionof the mass stripped from the star that will end up bound to the black hole.The function S(b) has been derived from our SPH simulations of an n = 3=2polytrope with a mass of 1 M� and a radius of 1 R�. These results are shownin Figure 4.1. An n = 3=2 polytrope has a density pro�le similar to that of lowmass (M � 0:4 M� or less) stars which dominate the present day mass function(PDMF) of the solar neighborhood (Rana 1987). By using the n = 3=2 polytroperesults, we are assuming that the PDMF of the stellar cluster surrounding theblack hole is similar to that of the solar neighborhood. This assumption will su�cefor the current calculation, as we want to keep our stellar cluster model simple inorder to more easily judge the a�ect of using our SPH derived S(b) instead of thehard{sphere assumption used in previous work. For the sake of comparison withthe SPH derived S(b) in Figure 4.1, the hard{sphere assumption can be statedmathematically as SHS(b) = 8<: 1; b � rt ,0; b > rt . (4.15)



96
Fig. 4.1.| Fraction of star which is stripped and bound to the black hole afteran encounter with an impact parameter of b. This �gure is for the case of a 1 M�polytrope of index n = 3=2. For reference, the tidal radius rt for this polytrope is6:96 � 1012 cm.We are now ready to combine the di�erential encounter rate �0 with thestripped mass fraction function S(b) in order to determine the di�erential strippingrate �(b) �(b) = m? �0 S(b) ; (4.16)where m? is the mass of the star. For the purpose of this calculation, we will beusing m? = 1 M� in order to directly compare to the results of Duncan & Shapiro(1983). The di�erential stripping rate �(b) gives the mass per unit time strippedfrom stars with impact parameters between b and b+ db. The total stripping ratefor the cluster F is given by integrating �(b) over b. In practice we will choosethe upper limit of b = 1:5 � 1013 cm as the maximum impact parameter, as ourSPH results show this is where mass stripping stops. The lower limit for b requiresmore careful consideration. If b is less than the Schwarzschild radius of the blackhole, then the star will simply be swallowed by the black hole. Therefore, the



97Schwarzschild radius sets an absolute lower limit. There is another consideration,however. Early work on the tidal disruption of stars by Carter & Luminet (1982)brought up the possibility that the star will be so strongly deformed by the tidalforces of the black hole that enhanced nuclear burning in the star could cause anexplosion. The energy of the explosion might allow most of the material from thestar to escape from the black hole. Although our SPH calculations in Chapter 3did not directly address this prediction of Carter & Luminet, our work supportstheir �nding that the central density of the star increases signi�cantly for closeencounters. However, for a solar mass star and a 106 M� black hole, the di�erencebetween the Schwarzschild radius and the impact parameter where the compressionof the star becomes signi�cant is only of order a factor of 2. These close encountersare so rare that changing the lower integration limit to take into account the e�ectpredicted by Carter & Luminet will hardly a�ect the total stripping rate for thecluster. Therefore, we will use the Schwarzschild radius as the lower integrationlimit.We are now ready to consider an example using a galactic nucleus with typicalparameters. We will choose 	(0) = 8�2, n0 = 106 stars=pc3, � = 200 km=s,m? = 1 M�, and Mbh = 106 M�. The value of 	(0) is chosen to be the same asthat used by Duncan & Shapiro (1983) in their study of the evolution of a massiveblack hole at the center of a King cluster. The cluster will have a core radius ofRc = 2:6 pc. The cumulative mass function for the stellar cluster will be calledM(r) and is plotted in Figure 4.2. The stellar mass density �(r) is shown in Figure4.3. Using equation 4.14, we �nd that the di�erential encounter rate has a value of�0 = 8:4 � 10�25 stars=sec=cm : (4.17)To make this number more tractable, consider that the number of stars passing per



98
Fig. 4.2.| Total mass inside of a given radius r for the stellar cluster modelpresented in the text.
Fig. 4.3.| Density pro�le �(r) for the stellar cluster model presented in the text.



99second within the Roche radius rt of the black hole is rt �0. For a 1 M� star withrt = 100R�, this translates into one disruptive encounter with the black hole every5400 years. By combining this value of �0 with the SPH derived stripped massfraction function S(b), we �nd the di�erential stripping rate �(b), given in Figure4.4. The cumulative stripping rate, shown in Figure 4.5, is given by integrating�(b), and represents the rate at which material is stripped from stars on orbits withan impact parameter less than or equal to a given value of b.It was mentioned above that deep encounters may possibly lead to theexplosion of the star, causing all of the stellar material to escape from the blackhole. This is only important for stars with an impact parameter of b � 5� 1011 cmor less. As can be seen in Figure 4.5, the contribution to the total stripping rateby stars on these orbits is less than 5%. Therefore, our decision to simply use theSchwarzschild radius as our inner boundary has only a small e�ect on the totalstripping rate.The cumulative stripping rate levels o� around an impact parameter ofb = 1013 cm because beyond that distance a star does not lose mass, as shown bythe plot of S(b) in Figure 4.1. The total rate at which mass is stripped from starsby the black hole is F = 1:1 � 10�4 M� yr�1 : (4.18)We will now compare our result to that of previous work by Duncan & Shapiro(1983), who used the hard{sphere assumption. They considered a model using anisothermal sphere for the star cluster. All stars were assumed to have a mass of1 M�, as in our calculation above. In addition, they assumed that the loss conewas full at all energies. The expression they derived for the total stripping rate is
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Fig. 4.4.| Di�erential mass stripping rate �(b).given by Ffull = 0:31 v5350 M4=38 N�28 M� yr�1 : (4.19)Here, v350 is the one{dimensional velocity dispersion � expressed in units of 350km/sec,M8 is the mass of the black hole in units of 108 M�, and N8 = 2:19n0R3c=108.For the present calculation v350 = 0:57, M8 = 0:01, and N8 = 0:38. These givea total stripping rate of Ffull = 2:8 � 10�4 M� yr�1, somewhat larger than ourresult of 1:1 � 10�4 M� yr�1. To make our calculation closer to that of Duncan &Shapiro, we can take our stellar cluster model and use the hard{sphere assumptioninstead of our SPH derived S(b). Doing so, we �nd a total stripping rate of1:8 � 10�4 M� yr�1. Our estimate is still lower than that of Duncan & Shapiro,most likely because they assumed that the loss cone was full at all energies. In ourcalculation, we have restricted our sum to only those energies where the loss coneis full. If we remove this restriction and integrate over all energies, we �nd a totalstripping rate of 2:4 � 10�4 M� yr�1. The remaining discrepancy can be explained
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Fig. 4.5.| Cumulative mass stripping rate. Note that the majority of strippedmass comes from stars which pass inside of the Roche radius rt = 6:96� 1012 cm.by our use of a King Model, which is of �nite extent, and their use of an isothermalsphere, which extends to in�nity.The surprising conclusion which can be made from this example is thatusing our hydrodynamic results reduces the rate at which material is strippedby a factor of two, compared to estimates that use the hard{sphere assumption.This result can be easily understood if one considers the stripped mass fractionfunction S(b) in Figure 4.1. The tidal radius for the polytrope used in the SPHcalculation was rt = 6:96 � 1012 cm. For encounters with an impact parameter ofrt or less, Figure 4.1 shows that the star loses one{half of its material to the blackhole, and, for larger impact parameters, the amount of material lost drops to zerorapidly. The hard{sphere assumption states that the entire star is accreted forimpact parameters less than rt, and that no material is accreted for larger impactparameters. Therefore, the hard{sphere assumption is essentially correct if onemodi�es it to state that one{half of the star is accreted for impact parameters of



102rt or less. This conclusion is a result of the fact that the amount of mass strippedfrom the star (in this case an n = 3=2 polytrope) is a sensitive function of theimpact parameter b for b near rt. Although we have only considered one set ofvalues for a galactic nucleus here, this �nding should be universal for any stellarcluster since it does not depend on the cluster characteristics, just the details ofthe hydrodynamics of the disruption process.4.2 Overall Role of Tidally{Disrupted Stars as a Fuel SourceWe now have an estimate of the rate at which a black hole can be fed bythe tidal disruption of stars. It is interesting to compare this rate to that fromother sources of gas for the black hole. The two main possible other sources ofgas which have been considered in the literature are stellar collisions and stellarwinds. Duncan & Shapiro (1983) included stellar collisions in their Fokker{Plancksimulations of the growth of a black hole in a galactic nucleus. The followingexpression was given for the rate at which material is freed through stellar collisionsin an isothermal sphere of solar mass starsFcoll = 2:4 � 10�3 v5350 (v2350 + 0:77)N8 M� yr�1 ; (4.20)where the de�nition of the quantities are the same as for equation (4.19). Using thevalues from our example in the previous section gives Fcoll = 4:2 � 10�4 M� yr�1,about a factor of two greater than the fueling rate due to the tidal disruption ofstars given by equation (4.19). This estimate ignores the presence of a massiveblack hole, which will cause the stellar velocity dispersion and density to increasetowards the center of the cluster. The net e�ect will be to increase the collisionalrate above that predicted by equation (4.20). As the mass of the black hole



103increases, so does the enhancement to the collision rate. However, for a 106 M�black hole, this e�ect is not strong, and the factor{of{two di�erence between thetidal disruption and stellar collision rates should not require much modi�cation.Another series of Fokker{Planck calculations including stellar collisions havebeen performed by Murphy et al. (1991). These calculations also included massloss due to stellar evolution and used a multimass Fokker{Planck code versus thesingle mass Fokker{Planck code employed by Duncan & Shapiro. For initial centralstellar densities of a few times 107 M� pc�3, they found that stellar collisions arethe dominant source of material. In these clusters, the present day black hole masswas of order 109 M�. For lower black hole masses and stellar densities, they foundthat stellar evolution was the dominant source of fuel. In one of their models,they chose �0 = 7 � 105 M� pc�3, which led to a present{day black hole massof 3:5 � 106 M� pc�3. These values are close to the parameters we used in theprevious section to calculate the fueling rate from the tidal disruption of stars. Forthis simulation, Murphy et al. found that stellar evolution produced material at arate about a factor of ten greater than the tidal disruption of stars. In addition,material from stellar collisions was produced at about one{tenth the rate due tothe tidal disruption of stars. This is in stark contrast to the rate given by equation(4.20) from the work of Duncan & Shapiro, which predicted that stellar collisionswould provide material at about twice the rate as the tidal disruption of stars.A major uncertainty in both the work of Duncan & Shapiro and Murphyet al. are the stellar collisional cross sections. Much like the hard{sphereassumption these works use to treat the tidal disruption of stars, assumptions hadto be made concerning the cross section for two stars to collide. Hydrodynamicsimulations of the collision of two stars now exist (e.g., Benz & Hills 1987), and



104new Fokker{Planck simulations are needed to properly model the rate at whichstellar collisions provide material. Another consideration is that the liberation ofmaterial by stellar evolution and stellar collisions occurs throughout the cluster.The migration of this gas down to the black hole is not a given, and the predictedfueling rates from these two sources must be viewed as upper limits. For example,mass loss from a star due to a stellar wind may send material in all directions. Onlya fraction of this material will actually move on orbits which lead to being accretedby the black hole. On the other hand, the tidal disruption of a star deposits all ofthe liberated material within 100 Schwarzschild radii or less, meaning it is almostcertain that all of this material will become part of an accretion disk. Again, moredetailed calculations are required to fully understand the role of each fuel source inthe feeding of the central black hole.Finally, a major focus of this work is to consider the utility of the tidaldisruption of stars in order to detect quiescent black holes in the nuclei of galaxies.Even if the tidal disruption of stars does not provide as large a time{averagedfueling rate as collisions or stellar evolution, when a star does disrupt, it providesmaterial at a rate of order 1 M� yr�1 to the central black hole for a period of orderone year. In contrast, stellar evolution provides material at the fairly steady rateof 10�4{10�5 M� yr�1 for the case considered above from Murphy et al. Stellarcollisions should provide material in bursts somewhat like the tidal disruptionof stars, but it is unclear at what rate the debris from a stellar collision will beaccreted by the black hole. It would seem that this would depend strongly uponthe magnitudes and orientations of the velocities of the two stars colliding. Giventhese considerations, although it appears that tidal disruptions are not the mainsource of fuel by which a black hole grows to its present day mass, these events arehighly suited for our purpose of detecting black holes in dead AGN.



1054.3 Observational Consequences of a Tidal Disruption EventUsing our SPH simulations, we have now determined how much mass isstripped from a star which passes a black hole with a given impact parameter.Unfortunately, the disruption event is unlikely to be observed by astronomers sinceit takes place on the time scale of hours. Furthermore, the debris of the star coolsso rapidly as it expands that it would be nearly impossible to detect such an eventin the dense star �eld present at the center of a galaxy. It appears that the onlypractical way to detect a disruption event in a galactic nucleus is to wait for thestripped material to be accreted by the black hole (Rees 1988).It is currently impossible to follow computationally the debris of the disruptionevent all the way to the point at which it is accreted by the black hole. Severalauthors, however, have speculated on what we should expect to happen (Rees 1988;Evans & Kochanek 1989; Cannizzo et al. 1990; Syer & Clark 1992; Kochanek 1993;Rees 1994). We will now summarize the main �ndings of these works. The materialstripped from the star initially follows a distribution of Keplerian orbits about theblack hole, as the material has cooled to the point that hydrodynamic forces arenot signi�cant and the gravitational �eld of the black hole dominates. The fractionof the debris bound to the black hole will follow highly elliptical orbits, with themost tightly bound material having an orbital period of (Rees 1988)Pmin ' 0:03M1=26 yr ; (4.21)where M6 is the mass of the black hole in units of 106 M�. Rees (1988) haspredicted that the rate at which mass returns to pericenter as a function of time isgiven by _M ' 25M�1=26 (t=Pmin)�5=3 M� yr�1 : (4.22)



106Earlier SPH calculations by Evans & Kochanek (1989) and Laguna et al. (1993),as well as our own SPH calculations (for example, see Figure 3.4), have con�rmedthis expression with only minor modi�cations. Due to the wide range of orbitalperiods present, the debris will stretch out into a long, thin streamer of gas . Atthis stage, the debris would not strongly radiate, as it consists of very cold gas.Several factors could cause the gas to become visible. Rees (1988) mentionsthat the closest approach of the debris upon return is approximately the same asthe impact parameter of the star from which the debris originated. For a 106 M�black hole and a solar{type star passing at a distance of rt, this corresponds to adistance of approximately 20 Schwarzschild radii. Relativistic orbital precession isnon{negligible at this distance, so, after a few orbits, the most tightly bound debriswill collide with material on longer period orbits (Rees 1988). The resulting shockwould raise the temperature of the gas to a temperature of 105 K or greater. Thedebris is then thought to form an accretion disk, which could possibly be elliptical(Syer & Clark 1992). It is believed that the material will be accreted by the blackhole at the rate given by equation (4.22), as long as this rate is less than (Rees1988) _Mcrit = 0:02 ��10:1M6 M� yr�1 ; (4.23)where �0:1 is the e�ciency of the disk at radiating the rest mass of infalling debris,in units of 10%. This limit corresponds to the disk luminosity being equal to theEddington luminosity LE LE = 1:1� 1044M6 ergs s�1 : (4.24)If L > LE, then material will be falling in faster than the black hole can swallowit, raising the possibility that a small fraction of the debris will be accretedwith su�cient energy to eject the remaining debris (Rees 1988). An alternative



107possibility is that the radiative e�ciency � of the disk will drop so that all of thedebris can be accreted at a luminosity close to LE. The di�erence is that in the �rstpossibility, there would be a brief 
are followed by no emission, while in the secondpossibility, the disk would radiate at a luminosity near the Eddington luminosityuntil the infall rate dropped su�ciently for the black hole to accept the debris withnormal radiative e�ciency. The luminosity would then decline following equation(4.22). Only a detailed calculation will be able to resolve between these twopossibilities. Another complication arises if the black hole has a Kerr metric (Rees1988). In that case, if the orbital axis of the debris is not aligned with the blackhole's spin axis, the Lense{Thirring e�ect will cause the orbital axis of the debristo precess. In that case, the time scale for the stream to intersect itself could beconsiderable lengthened, and clearly this could a�ect the formation of an accretiondisk. However, like previous authors, we will proceed assuming that we can ignorethis complication, as a detailed calculation will be necessary to do otherwise.In this work, we are primarily interested in black holes with a mass of order106 M�. Assuming a radiative e�ciency � with the canonical value of 0:1, theaccretion rate corresponding to LE is 0:02 M� yr�1. Our SPH calculations of thetidal disruption of an n = 3=2 polytrope show that the mass return rate exceedsthis limit for about one year, independent of the impact parameter of the star whichwas disrupted. We also �nd that the peak rate at which mass returns is also fairlyindependent of the impact parameter. If we now assume that all of the materialwill be accreted (the second possibility mentioned in the previous paragraph), thesignature of a tidally{disrupted star will be a 
are of nearly constant luminosityLE for a period of approximately one year. Afterwards, the accretion rate will beless than the critical value determined by the Eddington luminosity. If one assumesthat � remains constant, then the luminosity will have the same temporal behavior



108as the mass accretion rate given by equation (4.22) until the mass accretion ratebecomes so low that � starts to decrease. The possibility of detecting a massiveblack hole in this manner was �rst recognized by Rees (1988).Very little is currently understood concerning the energy spectrum of the
are, as it depends upon the details of the accretion 
ow near the black hole.Some general comments are possible, however. When the stream of material �rstintersects itself, the resulting shock could heat material to � 107 K (Rees 1988).This is because the two parts of the stream which intersect could collide withvelocities which are relativistic. Later, after the material has formed an accretiondisk, the e�ective black{body temperature of the radiation will be � 105 K fora 106 M� black hole. Therefore, the energy spectrum should be dominated byextreme ultraviolet and soft X{ray photons.It should be possible to detect X{ray 
ares from tidally{disrupted stars usinga large survey like the ROSAT All Sky Survey (RASS) (Sembay & West 1993).Sembay & West have estimated that if most bright galaxies (MB < �20) containa massive black hole, at least several hundred if not several thousand 
ares couldhave been detected by the RASS. Another way to look at this estimate is as follows:because the time scale for the disruption of a star in a galactic nucleus is of order103{104 years and the peak of the 
are lasts of order 1 year, one would expect atleast 1 out of every 104 galaxies to be in the 
are state. Sembay & West assumedthat one{half of the star was accreted by the black hole if the star passed within rt.Our SPH results con�rm this assumption to be reasonable. In addition, Sembay &West assumed that the debris would be accreted at near the Eddington luminosityfor a period equal to the length of the RASS, six months. This assumption isuncertain until detailed calculations are available concerning the accretion of the



109stripped debris. It would seem that this assumption would give an upper limit onthe number of detectable events, as the truth might be that the debris accretes ata super{Eddington rate for only a short period, during which the remaining debrisis blown away instead of accreted. In either case, in order to detect any 
ares, itwill be necessary to compare the RASS observations to observations from anotherepoch, such as the Einstein IPC database. Con�rmation of the predicted numberof 
are events would be strong evidence that most normal galaxies go through anAGN phase during their lifetime. Likewise, the failure to detect many events wouldprobably indicate that AGN activity is the exception, not the rule, in the life of agalaxy.4.4 Current Observational Evidence for Tidally{Disrupted Stars4.4.1 The X{ray Outburst of IC 3599The most likely method of detecting the tidal disruption of a star is from theassociated X{ray 
are, which lasts of order one year (Rees 1994). Such an eventmay have already been observed during ROSAT observations of the Seyfert galaxyIC 3599 (Grupe et al. 1995). They measured 4:9 counts per second in a December1990 observation from the RASS. Following pointed observations with ROSATgave 0:064 counts per second in December 1991, 0:043 counts per second in June1992, and 0:023 counts per second in June 1993. This corresponds to a decreasein luminosity by over a factor of 100 in a few years. Grupe et al. claim that it isunlikely that this variation in luminosity is due to a temporary absorbing screen.The observations seem instead to suggest that the feeding rate of the black holemade an abrupt change.



110Grupe et al. are able to set limits on the mass of the central black hole usingthe following procedure. If one assumes that the peak X{ray luminosity observedfrom IC 3599 is less than or equal to the Eddington luminosity, the mass Mbh ofthe central black hole must beMbh > 0:4 � 106 M� : (4.25)One can also set an upper limit on the mass of the black hole using the � 500 km=sline widths of [FeX]�6375 and [FeVII]��5721; 6086. If one assumes that the widthof these lines is larger than the Keplerian velocity at a distance of R, the mass ofthe black hole must be Mbh < 33 (R=1 pc)� 106 M� : (4.26)This limit should be met with caution, as the exact choice of R is not stronglyconstrained. Note that the range of masses proposed by Grupe et al. is centerednear a mass of 106 M�. Finally, it can be shown (e.g., Blandford & Rees 1992)that a black hole mass near 106{107 M� is consistent with the observed thermalspectrum having a temperature of kT � 60{100 eV. Consider that the majority ofthe luminosity from the disk comes from the innermost region, say from r < 10Rg(Shakura & Sunyaev 1973), where Rg is the Schwarzschild radius given byRg = 2GMbhc2 (4.27)= 3  Mbh106 M�!� 1011 cm : (4.28)For the sake of this calculation, we will assume that the disk can be approximatedas a spherical black body with a radius of Rbb = 10Rg. The luminosity of this blackbody will be Lbb = 4� �R2bb T 4bb ; (4.29)



111where Tbb is the temperature of the black body. Substituting a value of 10Rg forRbb, and using equation (4.28) to eliminate Rg, we �nd thatLbb = 6:4� 1019 M6 T 4bb ergs s�1 : (4.30)If we now divide both sides by the Eddington luminosity LE, given by equation4.24, and solve for Tbb, we �nd that the e�ective temperature of the disk is given byTbb = 1:1 � 106 M�1=46 �LbbLE �1=4K' 100M�1=46 �LbbLE �1=4 eV : (4.31)Therefore, if we assume that the luminosity of the 
are is less than LE, we requirethat the mass of the black hole to be of order 107 M� or less to be consistent withthe observed thermal spectrum temperature of 60{100 eV.As mentioned above, Grupe et al. proposed that the X{ray luminosity variedin response to a change in the accretion rate. One explanation o�ered for whythe accretion rate varied over this period was an instability in the accretion disk.Although this scenario appears to work if one tweaks the disk parameters, wewould like to explore the second explanation o�ered by Grupe et al. { the accretionof material from a tidally{disrupted star. Let us now see if the temporal behaviorof the outburst is consistent with this hypothesis. As discussed in the previoussection, if the rate at which the tidally{stripped material returns to the black holeexceeds the rate allowed by the Eddington luminosity, one possibility is that thedisk will adjust itself to allow the material to be accreted with an e�ciency sothat its luminosity is approximately LE. The luminosity of the disk would staynear LE until the rate at which material returns to the black hole drops belowthe Eddington limit. Following Rees (1988), we seek to �nd the duration Pedd ofthis constant portion of the light curve. The temporal behavior of the accretion



112rate is given by equation (4.22). We simply need to �nd how long the rate givenby equation (4.22) is greater than the Eddington rate given by equation (4.23).Performing this calculation givesPedd ' 2:16 �0:60:1M�0:46 yr : (4.32)The reader will now �nd it instructive to consult Figure 4.6 during thefollowing discussion. This �gure plots _M and L versus time. The star is �rstdisrupted at t = 0, and then the �rst material begins to return to the black holeat the time t ' Pmin, where Pmin is given by equation (4.21). From this time onwe will assume that the tidally{stripped material is accreted by the black hole atthe rate it returns from its elliptical orbits. This means the accretion rate of theblack hole will follow equation (4.22). For a black hole mass of 108 M� or less,there will be a period where the accretion rate exceeds the Eddington rate. In thatcase, there will be a period of length Pedd over which the light curve is constant, asshown in in Figure 4.6. We have assumed that the disk is able to adjust itself so� _Mc2 is less than or equal to LE, as discussed in the previous section.Let us now assume that the December 1990 observation corresponds to the endof period of constant luminosity, i.e., t = Pmin + Pedd. From this time onwards, weassume that L / _M , since the accretion rate will now be less than the Eddingtonrate. The next observation occurs in December 1991 and is a factor of 76:5 lowerthan the December 1990 measurement. The luminosity after December 1991 doesnot change signi�cantly compared to this initial drop. Since IC 3599 is a Seyfertgalaxy, there may be steady X{ray emission, and we should not expect the X{rayluminosity to drop to zero when all of the tidally{stripped debris has been accreted.Let us therefore concentrate on the initial drop in X{ray luminosity betweenDecember 1990 and December 1991. Because L / _M , and _M follows equation
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EddminEddminPminFig. 4.6.| Proposed scenario for the IC 3599 outburst. At t = 0 a star is disruptedby the massive black hole. The material stripped from the star begins accretingaround t ' Pmin. At this time, the accretion rate _M is greater than that allowed bythe Eddington rate _MEdd. The accretion disk adjusts itself so that it accepts all theincoming material with a lower e�ciency, and the luminosity Lx will be constantand have a value near LEdd. When _M < _MEdd, the luminosity is assumed to beproportional to _M , which will follow equation (4.22) at all times after t = Pmin. Itwill be assumed that the December 1990 ROSAT observation occurred at the endof the constant portion of the light curve. For full details, consult the discussion inthe main text.



114(4.22), we can write the following relationship between the luminosity on December1990 and December 1991L(1990)L(1991) = 76:5 = �Pmin + Pedd + 1 yrPmin + Pedd �5=3 : (4.33)This can be simpli�ed to the relationshipPmin + Pedd = 0:08 yr : (4.34)It turns out there is no physical solution for the mass of the black hole, whenequations (4.21) and (4.32) are substituted for Pmin and Pedd. What this means isthat if this X{ray burst is due to the accretion of tidally{stripped debris, then theaccretion mechanism does not work as we assumed. It is not possible to have sucha strong decrease in the X{ray luminosity in such a short time. These conclusionsare based on the assumption that all material is still accreted when the accretionrate is super{Eddington. Another possibility mentioned in the previous section isthat some material is accreted at the super{Eddington rate, but radiates su�cientenergy to liberate the remaining material from the black hole. In this case, onewould expect a brief period of strong X{ray emission followed by an abrupt drop.At this time, it is impossible to choose whether either scenario is correct. Itwill probably require sophisticated modeling of the accretion process in order tounderstand this problem fully.In conclusion, the observations of IC 3599 are within the realm of what wemight expect from the accretion of a tidally{disrupted star, but this statementonly belies our lack of understanding of how the material is accreted once strippedfrom the star. Let's review some other possibilities forwarded by Grupe et al. Itis unlikely that a change of a factor of 100 in luminosity is due to change in theoptical depth to the X{ray source. Grupe et al. also discount the possibility that



115this outburst is due to a single supernova, which would be too faint to explain theobserved luminosity. The �nal option considered is a short{term increase in theaccretion rate due to instabilities in the accretion disk. This appears to work ifthe proper parameters are chosen, but it is not clear that these parameter valuesare reasonable. Therefore, while it is conceivable that the X{ray 
are observedfrom IC 3599 was due to the tidal disruption of a star, this is by no means the onlyplausible explanation.4.4.2 Balmer Line Variability in NGC 1097There is a class of AGN known as low{ionization nuclear emission{lineregions, or LINERs (Heckman 1980). As their name suggests, narrow low{ionization emission lines (e.g., H�, [OI]�6300, and [O II]�3727) are the dominantspectroscopic feature of these objects. There has been some debate to date aboutwhether the emission lines are excited by shocks or photoionization. Recently,Eracleous et al. (1995a, hereafter ELB) have proposed a new photoionization modelfor LINERs which was motivated by the results of an ultraviolet (UV) snapshotsurvey of 26 LINERs using HST by Maoz et al. (1995). If photoionization is theexcitation mechanism, it is expected that a compact nuclear UV source shouldbe present in each object. Instead, only 5 of the 26 LINERs observed had such anuclear region. One obvious interpretation is that 80% of the objects had materialwhich obscures the central UV source. Another possibility is that the excitationmechanism is one that does not require a central UV source, such as shocks.However, ELB take a di�erent stance on the HST observations in saying that theyrepresent a population powered by a central UV source that is only active 20%of the time. They propose that, normally, the central black hole is starving for



116material. When a star is tidally disrupted, the black hole becomes a UV sourceand photoionizes the surrounding medium. The black hole is expected to be asigni�cant UV source for only several decades. Using a photoionization model,ELB �nd that when the UV 
ux from the black hole drops, the high{ionizationlines such as [OIII]�5007 are found to also drop as the atoms recombine. However,low{ionization lines are found to persist until the next expected tidal disruptionof a star. In order for the duty cycle to be 20%, they require a black hole massof order 107 M�. Considering that one{third of all spiral galaxies are observed tobe LINERs (Ho et al. 1995), if this model is correct, then we are witnessing theresults of the tidal disruption of stars all around us.To support their model, ELB point out the recent outburst of the LINERNGC 1097 (Storchi{Bergmann et al. 1993). In this outburst, the spectrum ofNGC 1097 underwent a change from a LINER spectrum to that of a Seyfert 1galaxy with the appearance of broad, double{peaked Balmer lines and a featurelesscontinuum in the optical. Further observations revealed that the broad H� pro�levaried with time. Eracleous et al. (1995b) have modeled this variation as theprecession of an elliptical ring around a 106 M� black hole. The ring is believed tohave formed from the debris of a tidally{disrupted star. If that is the case, then weare witnessing the start of the active cycle of this LINER. In a few decades, thefeatureless continuum will have faded, and, soon afterwards, the high{ionizationlines will have disappeared.The duty cycle hypothesis of ELB suggests a new way to search for tidaldisruption events. Using NGC 1097 as an example of what such an event wouldlook like, we expect the broad Balmer lines to persist for at least several years.Depending on the mass of the central black hole as well as the central star cluster



117parameters, we expect a star to be disrupted every 102{104 years. If the duty cyclehypothesis is correct, an observing program that checked several hundred LINERgalaxies every few years would catch many in an outburst stage like NGC 1097exhibited. Since LINER galaxies include nearby, bright galaxies, this programwould not require deep exposures of each object. It might even be possible to usea multi{object �ber spectrograph to sample large numbers of galaxies at once in agalaxy cluster. 4.5 ConclusionsThere is now mounting evidence that massive black holes exist in the coresof some nearby galaxies. Dynamical evidence exists for the presence of a massiveblack hole not only in our own Galaxy, but in several nearby galaxies as well.Currently, the only reasonable explanation for the source of power of AGNs reliesheavily upon the existence of a massive black hole in the central engine. What is ofgreater uncertainty is how common it is for a galaxy to form a central black hole.Studies of the evolution of the quasar luminosity function suggest either (a) thatmost galaxies went through a short AGN phase and should have a � 107 M� blackhole, or (b) that only a few galaxies went through a long AGN phase and possessa 109{1010 M� black hole (Boyle et al.). Of course, as it is with most things, thetruth is probably somewhere between these two extremes.If we were able to detect the presence of a massive black hole in a galaxynot currently in the AGN phase, it would be possible to determine how manygalaxies have a massive black hole. For nearby galaxies, it is possible to usedynamical evidence to detect the gravitational in
uence of a black hole on stars.Unfortunately, this technique is impractical for the large majority of galaxies due



118to the high spatial resolution that would be required. However, it is still possibleto detect the presence of a black hole by the destructive in
uence it would have onstars that stray too close. The disruption of a star would feed of order 1 M� ofmaterial into the previously dormant black hole, resulting in an X{ray outburst atnear the Eddington luminosity LE (given by equation 4.24) for a period of orderone year. Looking for such outbursts in otherwise quiescent galaxy nuclei o�ers ane�ective, if not the only, way to detect massive black holes in the cores of thesegalaxies.To estimate how often outbursts will occur in a given galaxy requires knowledgeof the disruption process. Previous estimates have assumed that if a star passedcloser than a threshold distance, it was disrupted and completely accreted (thehard{sphere assumption). Only recently has it become possible to numericallycalculate the details of the disruption process. Using a series of SPH calculations,we have mapped out the dependence of the mass lost by a star as a function of itsclosest approach to the black hole. We �nd that if we use these SPH results insteadof the hard{sphere assumption used in previous calculations, we have slightly moredisruption events, but the total mass accreted is approximately half that whichwould be expected using the hard{sphere assumption. These conclusions comeabout for two reasons. One is because the SPH results show that a star will losesome material for a larger impact parameter than the threshold distance used forthe hard{sphere assumption. This results in more disruption events. Secondly,the reason the SPH results yield half the total mass that the hard{sphere resultsdo is because the star can only lose at most one{half of its mass to the blackhole. The hard{sphere assumption says that all of the star is accreted. Since thedistance at which the SPH simulations show that the star is completely disruptedis comparable to the threshold distance used in the hard{sphere calculations, the



119result is one{half as much total accreted material in the SPH case.These preliminary results indicated that past estimates of the disruption ratefor a given galaxy are reasonable, since our results do not signi�cantly changethe number of disruption events expected. However, previous work concerningthe growth of a massive black hole from a small seed black hole may need to bere{examined, as they have overestimated the total amount of mass that could beaccreted by a factor of two. New simulations using a Fokker{Planck code whichincorporate our SPH results to grow a massive black hole from a seed hole need tobe done. Work by Murphy et al. (1991) indicates, however, that tidal disruptionsare only important for the growth of smaller black holes (� 106 M�). Larger blackholes (� 108 M�) depend on debris from stellar collisions for the majority of theirmass. Given these considerations, the factor{of{two di�erence our results introduceseem to indicate that past studies captured the essential elements of the disruptionprocess by using the hard{sphere assumption. However, using our SPH results,future studies will be able to include more accurately the tidal disruption processwhen modeling the evolution of a massive black hole in a galactic nucleus.
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Chapter 5CONCLUSIONS AND FUTUREWORKThe possibility exists that a large fraction of present day galaxies harbor amassive black hole. This is suggested by studies of the contribution to the X{raybackground from Active Galactic Nuclei (AGN), as well as studies of the densityand luminosity evolution of AGN. On a more local scale, evidence exists for thepresence of a massive black hole in many nearby galaxies. Kinematic studies ofgas and stars in the central parsecs of our own Galaxy suggest the presence of an� 106 M� black hole at its core. Photometric and kinematic studies for severalnearby galaxies, such as M31 and M32, also suggest these galaxies possess amassive, central black hole. Unfortunately, it is not possible to detect a � 106 M�black hole by these methods except in only the nearest of galaxies. This is becausethe black hole in
uences a region of order 1 pc at the center of a galaxy, and atthe distance of the Virgo cluster (20 Mpc), the area of in
uence subtends 0:01arcseconds. A di�erent signature that will allow the unambiguous identi�cation of



121galaxies harboring massive black holes is therefore needed.If most galaxies have a massive black hole, it is expected that most are not inthe AGN phase, in order to be consistent with the present day AGN luminosityfunction. Instead, for reasons which are not presently clear, the black hole ismostly starved for material and does not exhibit the traditional features of anAGN central engine. Occasionally, perhaps once every 103{104 years, a star willbe disrupted by the central black hole. This event will dump of order 1 M� ofmaterial onto the black hole on a time scale of one year. Suddenly, the black holewill 
are into activity in what was previously an unexceptional galactic nucleus.The 
are is expected to be mostly observable in the extreme ultraviolet and softX{rays. One all{sky survey in this energy range has been completed (ROSAT AllSky Survey). Eventually, another survey will be performed, and, by searching fortransient events, evidence for the existence of massive black holes in most galaxiescould be found.An interpretation of the results of such an endeavor requires the modeling ofa stellar cluster in the vicinity of a massive black hole. With such a model, it ispossible to predict how often stars will come close enough to the black hole tobe disrupted. Once a star has disrupted, it is desirable to know the observableconsequences. This requires hydrodynamic simulations of the disruption of the star,as well as the fallback of the stripped debris to the black hole. In this work, we haveconsidered the disruption of a star using a new Smoothed Particle Hydrodynamics(SPH) method based on spheroidal kernels (Chapter 2). We found that thetraditional SPH method using spherical kernels proved to be inadequate for theextreme conditions present during deep plunges by a star into the gravitational�eld of the black hole. In addition, we found that the traditional way in which



122SPH treats viscous heating leads to incorrect results. Our new method amends thisproblem by incorporating a viscous heating term designed to give more accurateresults, and we found it to perform as expected. With the simulations presented inChapter 3, we have derived cross sections for the stripping of mass from polytropesof index n = 3=2 and n = 3. The n = 3=2 polytrope has an internal structureresembling low mass, fully convective M dwarfs. These stars form the majorityof the mass in stars in the solar neighborhood, and therefore, are likely to be themost common type of star to be disrupted. Stars of nearly solar mass or greatercan be represented by a polytrope of index n = 3. We have computed encountersfor polytropes of two indices in order to map out the behavior of all stellar types.As expected, the more centrally concentrated n = 3 model requires a deeperplunge before it is completely disrupted, as compared to the n = 3=2 model. Anunanticipated result was that the time scale for the material stripped from thestar to fallback to the black hole is fairly independent of the impact parameter ofthe star. This suggests that there may be a unique temporal signature of a 
areresulting from the tidal disruption of a star. However, to con�rm this, it will benecessary to hydrodynamically model the accretion of the debris onto the blackhole. This problem not only involves the tricky subject of an accretion disk; itmust also deal with how a stream of material interacts with itself to form a disk inthe �rst place, a process which involves general relativistic e�ects. It is possiblethat super{Eddington accretion rates may exist, which will only further complicatethe problem. Adding the possibility of a Kerr black hole, and the problem becomeseven more obfuscated. These problems must be solved, however, in order tounderstand the signature of the accretion of material from a tidally disrupted star.Once the details of the tidal disruption process are understood, it is necessaryto combine this knowledge with a model of a stellar cluster around a black hole in



123order to predict the rate at which 
ares will occur. A simple comparison of therate at which gas is stripped from stars in the case of the hard{sphere assumptionand our SPH results (Chapter 4) revealed that previous work predicted the correctrate of 
ares, but overestimated the rate at which mass is stripped by roughlya factor of two. This result can be partially understood by considering that thehard{sphere assumption states that the entire star is accreted by the black hole ifit was disrupted, whereas hydrodynamic calculations show that at most one{halfof the star can be accreted. The simple estimate in Chapter 4 can be furtherimproved in several ways. The estimate presented here assumed that the clusterwas a steady{state King model, and that the black hole mass did not change. Ina real system, the black hole mass and the dynamics of the cluster would evolvetogether. Initially, a small seed black hole will form, and this object will grow as itaccretes mass freed from stars through processes such as stellar collisions and massloss prompted by stellar evolution and the tidal disruption of stars. One method toproperly follow the evolution of the black hole and the stellar cluster requires thesolution of the Fokker{Planck equation. Previous studies using the Fokker{Planckhave used crude and inadequate treatment of tidal disruptions and stellar collisions.It would be a good time to revisit these issues making use of the large number ofnumerical simulations that have been carried out.Su�cient hydrodynamical studies of the tidal interaction of a star with a blackhole (e.g., this work, Diener et al. 1995; Khokhlov 1993), as well as the collisionof two stars (e.g., Benz & Hills 1987), have been done to suggest what the nextgeneration of Fokker{Planck codes should look like. In addition to a more accuratetreatment of the tidal disruption of stars by using our results from Chapter 3, thisnew code should also incorporate numerical results on the tidal capture of starsby the black hole as well. These objects will possibly require several passes close



124to the black hole before they lose material. If the time between interactions withthe black hole is too long, however, the star may be scattered to a di�erent orbitby interactions with other stars. This is why it would be interesting to include thisprocess in a Fokker{Planck code. Likewise, stellar collisions should be treated usingthe results of numerical simulations. To date, stellar collisions have been treatedusing the analysis of Spitzer & Saslaw (1966). Compared to numerical calculationsby Benz & Hills, for example, this earlier treatment neglects mass loss fromcollisions at less than the escape velocity of the colliding stars. Also, the treatmentby Spitzer and Saslaw provides no information on the energy and momentumdistribution of the debris, which can be used to predict how long it would takefor the the material to be accreted by the black hole. Finally, a Fokker-Planckcode should incorporate a multimass spectrum of stars. The only work so far to dothis is Murphy et al. (1991). Not only is a multimass model required to includeinteresting physics such as mass segregation, but also one would like to consistentlymodel tidal disruptions and stellar collisions using a realistic mass spectrum.A goal for Fokker{Planck simulations of the growth of a black hole in a stellarcluster is to try to explain why the AGN phase in most galaxies appears to onlylast several times 107 years, yielding a central black hole mass of 106{107 M�.With a Fokker{Planck simulation, it is possible to follow the luminosity of theAGN as a function of time, as one can calculate the rate at which mass is freedfrom stars by various processes. With a concrete theoretical understanding of theevolution of an AGN central engine, combined with observational limits set byX{ray all{sky surveys on the fraction of galaxies which show 
ares resulting fromthe tidal disruption of stars, it should be possible to make considerable progresstowards understanding the most powerful objects in the universe.
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